中文版 | English
题名

FedOVA: One-vs-All Training Method for Federated Learning with Non-IID Data

作者
通讯作者Yu,James J.Q.
DOI
发表日期
2021-07-18
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-4597-9
会议录名称
卷号
2021-July
页码
1-7
会议日期
JUL 18-22, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Federated Learning (FL) is a privacy-oriented framework that allows distributed edge devices to jointly train a shared global model without transmitting their sensed data to centralized servers. FL aims to balance the naturally conflicting objectives of obtaining massive amounts of data while protecting sensitive information. However, the data stored locally on each edge device are typically not independent and identically distributed (non-IID). Such data heterogeneity poses a severe statistical challenge for the optimization and convergence of the global model. In response to this issue, we propose Federated One-vs-All (FedOVA), an efficient FL algorithm that first decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning. Experiments on several public datasets show that FedOVA achieves higher accuracy and faster convergence than federated averaging and data sharing. Furthermore, our approach can support practical settings with a large number of clients (up to 1000 clients) in FL.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000722581700122
EI入藏号
20214110996071
Scopus记录号
2-s2.0-85116476672
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533409
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254013
专题工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,Department of Computer Science and Engineering,China
2.Faculty of Engineering and Information Technology,University of Technology Sydney,
3.Tencent Jarvis Lab,
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhu,Yuanshao,Markos,Christos,Zhao,Ruihui,et al. FedOVA: One-vs-All Training Method for Federated Learning with Non-IID Data[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Yuanshao]的文章
[Markos,Christos]的文章
[Zhao,Ruihui]的文章
百度学术
百度学术中相似的文章
[Zhu,Yuanshao]的文章
[Markos,Christos]的文章
[Zhao,Ruihui]的文章
必应学术
必应学术中相似的文章
[Zhu,Yuanshao]的文章
[Markos,Christos]的文章
[Zhao,Ruihui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。