题名 | FedOVA: One-vs-All Training Method for Federated Learning with Non-IID Data |
作者 | |
通讯作者 | Yu,James J.Q. |
DOI | |
发表日期 | 2021-07-18
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-4597-9
|
会议录名称 | |
卷号 | 2021-July
|
页码 | 1-7
|
会议日期 | JUL 18-22, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Federated Learning (FL) is a privacy-oriented framework that allows distributed edge devices to jointly train a shared global model without transmitting their sensed data to centralized servers. FL aims to balance the naturally conflicting objectives of obtaining massive amounts of data while protecting sensitive information. However, the data stored locally on each edge device are typically not independent and identically distributed (non-IID). Such data heterogeneity poses a severe statistical challenge for the optimization and convergence of the global model. In response to this issue, we propose Federated One-vs-All (FedOVA), an efficient FL algorithm that first decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning. Experiments on several public datasets show that FedOVA achieves higher accuracy and faster convergence than federated averaging and data sharing. Furthermore, our approach can support practical settings with a large number of clients (up to 1000 clients) in FL. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000722581700122
|
EI入藏号 | 20214110996071
|
Scopus记录号 | 2-s2.0-85116476672
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533409 |
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254013 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Department of Computer Science and Engineering,China 2.Faculty of Engineering and Information Technology,University of Technology Sydney, 3.Tencent Jarvis Lab, |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhu,Yuanshao,Markos,Christos,Zhao,Ruihui,et al. FedOVA: One-vs-All Training Method for Federated Learning with Non-IID Data[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-7.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论