中文版 | English
题名

Artificial Neural Networks as Feature Extractors in Continuous Evolutionary Optimization

作者
DOI
发表日期
2021-07-18
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-4597-9
会议录名称
卷号
2021-July
页码
1-9
会议日期
JUL 18-22, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Recent years have seen the advancement of data-driven paradigms in population-based and evolutionary optimization. This reflects on one hand the mere abundance of available data, but on the other hand also progresses in the refinement of previously available machine learning methods. Surprisingly, deep pattern recognition methods emerging from the studies of neural networks have only been sparingly applied. This comes unexpected, as the complex data generated by evolutionary search algorithms can be considered tedious and intractable for manual analysis with mere practical intuitions. In this work, we therefore explore opportunities to employ deep networks to directly learn problem characteristics of continuous optimization problems. Particularly, with data obtained during initial runs of an optimization algorithm. We find that a graph neural network, trained upon a graph representation of continuous search spaces, shows in comparison to more traditional approaches higher validation accuracy and retrieves characteristics within the latent space which are better at distinguishing different continuous optimization problems. We hope that our study can pave the way towards new approaches which allow us to learn problem-dependent algorithm components and recall these from predictions of inputs generated during the run-time of an optimization algorithm.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
European Union[766186]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000722581704121
EI入藏号
20214110995924
EI主题词
Evolutionary algorithms ; Knowledge management ; Learning algorithms ; Learning systems ; Neural networks ; Optimization ; Pattern recognition ; Population statistics
EI分类号
Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Computer Applications:723.5 ; Information Retrieval and Use:903.3 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85116461693
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533915
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254015
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University of Birmingham,Cercia,School of Computer Science,United Kingdom
2.Nec Laboratories Europe GmbH,Heidelberg,69115,Germany
3.Honda Research Institute Europe GmbH,Offenbach,63073,Germany
4.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Friess,Stephen,Tino,Peter,Xu,Zhao,et al. Artificial Neural Networks as Feature Extractors in Continuous Evolutionary Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-9.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Friess,Stephen]的文章
[Tino,Peter]的文章
[Xu,Zhao]的文章
百度学术
百度学术中相似的文章
[Friess,Stephen]的文章
[Tino,Peter]的文章
[Xu,Zhao]的文章
必应学术
必应学术中相似的文章
[Friess,Stephen]的文章
[Tino,Peter]的文章
[Xu,Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。