中文版 | English
题名

Neural Architecture Search Based on Evolutionary Algorithms with Fitness Approximation

作者
DOI
发表日期
2021-07-18
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-4597-9
会议录名称
卷号
2021-July
页码
1-8
会议日期
JUL 18-22, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Designing advanced neural architectures to tackle specific tasks involves weeks or even months of intensive investigation by experts with rich domain knowledge. In recent years, neural architecture search (NAS) has attracted the interest of many researchers due to its ability to automatically design efficient neural architectures. Among different search strategies, evolutionary algorithms have achieved significant successes as derivative-free optimization algorithms. However, the tremendous computational resource consumption of the evolutionary neural architecture search dramatically restricts its application. In this paper, we explore how fitness approximation-based evolutionary algorithms can be applied to neural architecture search and propose NAS-EA-FA to accelerate the search process. We further exploit data augmentation and diversity of neural architectures to enhance the algorithm, and present NAS-EA-FA V2. Experiments show that NAS-EA-FA V2 is at least five times faster than other state-of-the-art neural architecture search algorithms like regularized evolution and iterative neural predictor on NASBench-101, and it is also the most effective and stable algorithm on NASBench-201. All the code used in this paper is available at https://github.com/fzjcdt/NAS-EA-FA.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000722581705066
EI入藏号
20214110995695
EI主题词
Approximation algorithms ; Health ; Iterative methods ; Optimization
EI分类号
Medicine and Pharmacology:461.6 ; Mathematics:921 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85116459542
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533986
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254016
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Key Laboratory of Brain-inspired Intelligent Computation,Research Institute of Trustworthy Autonomous Systems,Department of Computer Science and Engineering,Shenzhen,518055,China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Pan,Chao,Yao,Xin. Neural Architecture Search Based on Evolutionary Algorithms with Fitness Approximation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pan,Chao]的文章
[Yao,Xin]的文章
百度学术
百度学术中相似的文章
[Pan,Chao]的文章
[Yao,Xin]的文章
必应学术
必应学术中相似的文章
[Pan,Chao]的文章
[Yao,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。