题名 | Neural Architecture Search Based on Evolutionary Algorithms with Fitness Approximation |
作者 | |
DOI | |
发表日期 | 2021-07-18
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-4597-9
|
会议录名称 | |
卷号 | 2021-July
|
页码 | 1-8
|
会议日期 | JUL 18-22, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Designing advanced neural architectures to tackle specific tasks involves weeks or even months of intensive investigation by experts with rich domain knowledge. In recent years, neural architecture search (NAS) has attracted the interest of many researchers due to its ability to automatically design efficient neural architectures. Among different search strategies, evolutionary algorithms have achieved significant successes as derivative-free optimization algorithms. However, the tremendous computational resource consumption of the evolutionary neural architecture search dramatically restricts its application. In this paper, we explore how fitness approximation-based evolutionary algorithms can be applied to neural architecture search and propose NAS-EA-FA to accelerate the search process. We further exploit data augmentation and diversity of neural architectures to enhance the algorithm, and present NAS-EA-FA V2. Experiments show that NAS-EA-FA V2 is at least five times faster than other state-of-the-art neural architecture search algorithms like regularized evolution and iterative neural predictor on NASBench-101, and it is also the most effective and stable algorithm on NASBench-201. All the code used in this paper is available at https://github.com/fzjcdt/NAS-EA-FA. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000722581705066
|
EI入藏号 | 20214110995695
|
EI主题词 | Approximation algorithms
; Health
; Iterative methods
; Optimization
|
EI分类号 | Medicine and Pharmacology:461.6
; Mathematics:921
; Optimization Techniques:921.5
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85116459542
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533986 |
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254016 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Key Laboratory of Brain-inspired Intelligent Computation,Research Institute of Trustworthy Autonomous Systems,Department of Computer Science and Engineering,Shenzhen,518055,China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Pan,Chao,Yao,Xin. Neural Architecture Search Based on Evolutionary Algorithms with Fitness Approximation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论