中文版 | English
题名

A Bayesian Learning Network for Traffic Speed Forecasting with Uncertainty Quantification

作者
通讯作者Yu,James J.Q.
DOI
发表日期
2021-07-18
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-4597-9
会议录名称
卷号
2021-July
页码
1-7
会议日期
JUL 18-22, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Intelligent transportation systems (ITS) depend on accurate and reliable traffic speed prediction to improve the safety, efficiency, and sustainability of transportation activities. Recently, deep learning approaches have significantly contributed to the development of ITS, but are still facing challenges in cyber-physical context due to the aleatoric uncertainty of increasingly uncertain traffic data and epistemic uncertainty of point-to-point estimation training models. In this work, a Bayesian deep learning model reframing with a universal traffic forecasting framework is devised for traffic speed forecasting with uncertainty quantification. The key idea of proposed network is to introduce time-series features in a latent distribution space. Compared to traditional point estimation neural networks, case studies show that the proposed model can predict more reliable results in cross domain learning tests and is capable of discovering good feature representations in missing traffic data or data-deficient scenarios.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032] ; Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation[2020B121201001]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000722581701047
EI入藏号
20214110996569
EI主题词
Bayesian networks ; Deep learning ; Forecasting ; Intelligent systems ; Intelligent vehicle highway systems ; Speed
EI分类号
Highway Systems:406.1 ; Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85116455184
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533457
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254017
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wu,Ying,Yu,James J.Q.. A Bayesian Learning Network for Traffic Speed Forecasting with Uncertainty Quantification[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Ying]的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Wu,Ying]的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Wu,Ying]的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。