题名 | A Bayesian Learning Network for Traffic Speed Forecasting with Uncertainty Quantification |
作者 | |
通讯作者 | Yu,James J.Q. |
DOI | |
发表日期 | 2021-07-18
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-4597-9
|
会议录名称 | |
卷号 | 2021-July
|
页码 | 1-7
|
会议日期 | JUL 18-22, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Intelligent transportation systems (ITS) depend on accurate and reliable traffic speed prediction to improve the safety, efficiency, and sustainability of transportation activities. Recently, deep learning approaches have significantly contributed to the development of ITS, but are still facing challenges in cyber-physical context due to the aleatoric uncertainty of increasingly uncertain traffic data and epistemic uncertainty of point-to-point estimation training models. In this work, a Bayesian deep learning model reframing with a universal traffic forecasting framework is devised for traffic speed forecasting with uncertainty quantification. The key idea of proposed network is to introduce time-series features in a latent distribution space. Compared to traditional point estimation neural networks, case studies show that the proposed model can predict more reliable results in cross domain learning tests and is capable of discovering good feature representations in missing traffic data or data-deficient scenarios. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032]
; Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation[2020B121201001]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000722581701047
|
EI入藏号 | 20214110996569
|
EI主题词 | Bayesian networks
; Deep learning
; Forecasting
; Intelligent systems
; Intelligent vehicle highway systems
; Speed
|
EI分类号 | Highway Systems:406.1
; Ergonomics and Human Factors Engineering:461.4
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85116455184
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533457 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254017 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Wu,Ying,Yu,James J.Q.. A Bayesian Learning Network for Traffic Speed Forecasting with Uncertainty Quantification[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-7.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论