题名 | Edge Sparse Basis Network: A Deep Learning Framework for EEG Source Localization |
作者 | |
通讯作者 | Liu,Quanying |
DOI | |
发表日期 | 2021-07-18
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-4597-9
|
会议录名称 | |
卷号 | 2021-July
|
页码 | 1-8
|
会议日期 | JUL 18-22, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | EEG source localization is an important technical issue in EEG analysis. Despite many numerical methods existed for EEG source localization, they all rely on strong priors and the deep sources are intractable. Here we propose a deep learning framework using spatial basis function decomposition for EEG source localization. This framework combines the edge sparsity prior and Gaussian source basis, called Edge Sparse Basis Network (ESBN). The performance of ESBN is validated by both synthetic data and real EEG data during motor tasks. The results suggest that the supervised ESBN outperforms the traditional numerical methods in synthetic data and the unsupervised fine-tuning provides more focal and accurate localizations in real data. Our proposed deep learning framework can be extended to account for other source priors, and the real-time property of ESBN can facilitate the applications of EEG in brain-computer interfaces and clinics. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62001205]
; Guangdong Natural Science Foundation Joint Fund[2019A1515111038]
; Shenzhen Key Laboratory of Smart Healthcare Engineering[ZDSYS20200811144003009]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000722581705048
|
EI入藏号 | 20214110995677
|
EI主题词 | Brain computer interface
; Deep learning
; Inverse problems
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Computer Peripheral Equipment:722.2
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85116418201
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533968 |
引用统计 |
被引频次[WOS]:13
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254018 |
专题 | 工学院_生物医学工程系 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen Key Laboratory of Smart Healthcare Engineering,Department of Biomedical Engineering,Shenzhen,China 2.Wake Forest School of Medicine,Department of Neurology and Anatomy,Winston-Salem,United States 3.Movement Control and Neuroplasticity Research Group,Ku Leuven,Leuven,Belgium |
第一作者单位 | 生物医学工程系 |
通讯作者单位 | 生物医学工程系 |
第一作者的第一单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Wei,Chen,Lou,Kexin,Wang,Zhengyang,et al. Edge Sparse Basis Network: A Deep Learning Framework for EEG Source Localization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论