中文版 | English
题名

A multi-task learning method for human motion classification and person identification

作者
通讯作者Fu,Chenglong
DOI
发表日期
2021-07-03
会议名称
6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
ISBN
978-1-6654-4596-2
会议录名称
页码
132-137
会议日期
JUL 03-05, 2021
会议地点
null,Chongqing,PEOPLES R CHINA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Wearable robotic systems have been widely studied in recent years, but it still remains a challenge to design a user-adaptive controller for wearable robotic systems to ensure personalized and accurate human-robot interaction. Accurate human motion classification and person identification are two premises helping design user-adaptive controllers for wearable robotic systems. In this paper, we proposed a multi-task learning method for human motion classification and person identification with a single neural network, which can serve as a solution to personalized human-robot interaction, and can also serve as a benchmark for the following studies in related fields. The multi-task learning neural network was trained and tested on a public human motion data set. The proposed method was capable to classify human motions and identify the person, with 99.13% and 96.51% accuracy, respectively. We also compared the proposed method with a benchmark single task learning method for human motion classification, the results showed that the performance of the multi-task learning method is more superior.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key R&D Program of China[
WOS研究方向
Automation & Control Systems ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000728141500022
EI入藏号
20214010982588
EI主题词
Adaptive control systems ; Benchmarking ; Human robot interaction ; Machine design ; Man machine systems ; Motion analysis ; Robotics
EI分类号
Mechanical Design:601 ; Data Processing and Image Processing:723.2 ; Control Systems:731.1 ; Robotics:731.5
Scopus记录号
2-s2.0-85116289700
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9536166
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254019
专题南方科技大学
工学院_机械与能源工程系
作者单位
1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Shenzhen,518055,China
2.Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Southern University of Science and Technology,Shenzhen,518055,China
3.The Department of Mechanical Engineering,The University of British Columbia,Vancouver,V6T 1Z4,Canada
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Xinxing,Zhang,Kuangen,Leng,Yuquan,et al. A multi-task learning method for human motion classification and person identification[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:132-137.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
ARM21_A_Multi-task_L(3587KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Xinxing]的文章
[Zhang,Kuangen]的文章
[Leng,Yuquan]的文章
百度学术
百度学术中相似的文章
[Chen,Xinxing]的文章
[Zhang,Kuangen]的文章
[Leng,Yuquan]的文章
必应学术
必应学术中相似的文章
[Chen,Xinxing]的文章
[Zhang,Kuangen]的文章
[Leng,Yuquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。