题名 | A multi-task learning method for human motion classification and person identification |
作者 | |
通讯作者 | Fu,Chenglong |
DOI | |
发表日期 | 2021-07-03
|
会议名称 | 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
|
ISBN | 978-1-6654-4596-2
|
会议录名称 | |
页码 | 132-137
|
会议日期 | JUL 03-05, 2021
|
会议地点 | null,Chongqing,PEOPLES R CHINA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Wearable robotic systems have been widely studied in recent years, but it still remains a challenge to design a user-adaptive controller for wearable robotic systems to ensure personalized and accurate human-robot interaction. Accurate human motion classification and person identification are two premises helping design user-adaptive controllers for wearable robotic systems. In this paper, we proposed a multi-task learning method for human motion classification and person identification with a single neural network, which can serve as a solution to personalized human-robot interaction, and can also serve as a benchmark for the following studies in related fields. The multi-task learning neural network was trained and tested on a public human motion data set. The proposed method was capable to classify human motions and identify the person, with 99.13% and 96.51% accuracy, respectively. We also compared the proposed method with a benchmark single task learning method for human motion classification, the results showed that the performance of the multi-task learning method is more superior. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key R&D Program of China[
|
WOS研究方向 | Automation & Control Systems
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000728141500022
|
EI入藏号 | 20214010982588
|
EI主题词 | Adaptive control systems
; Benchmarking
; Human robot interaction
; Machine design
; Man machine systems
; Motion analysis
; Robotics
|
EI分类号 | Mechanical Design:601
; Data Processing and Image Processing:723.2
; Control Systems:731.1
; Robotics:731.5
|
Scopus记录号 | 2-s2.0-85116289700
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9536166 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254019 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Shenzhen,518055,China 2.Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Southern University of Science and Technology,Shenzhen,518055,China 3.The Department of Mechanical Engineering,The University of British Columbia,Vancouver,V6T 1Z4,Canada |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen,Xinxing,Zhang,Kuangen,Leng,Yuquan,et al. A multi-task learning method for human motion classification and person identification[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:132-137.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
ARM21_A_Multi-task_L(3587KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论