题名 | Unsupervised learning based relative localization for WCE in a deformable tubular environment |
作者 | |
DOI | |
发表日期 | 2021-07-03
|
会议名称 | 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
|
ISBN | 978-1-6654-4596-2
|
会议录名称 | |
页码 | 119-124
|
会议日期 | JUL 03-05, 2021
|
会议地点 | null,Chongqing,PEOPLES R CHINA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Wireless capsule endoscopy is a promising technology for screening the entire gastrointestinal tract, but the lack of the capbility to locate the capsule is still one of its limitations. To solve the problem, in this paper, we propose a novel relative localization method based on unsupervised learning. The proposed algorithm can estimate the pose and the depth of each image from a image sequence. A Shape from Shading (SfS) based depth constraint is proposed to overcome the problem of “fake far view” and increase the localization accuracy. The proposed method is verified in an image dataset consisting of several pig colons with the average position error rate of 6.71%, which is 4.01% lower than that of the baseline. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key R&D program of China[2019YFB1312400]
|
WOS研究方向 | Automation & Control Systems
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000728141500020
|
EI入藏号 | 20214010982603
|
EI主题词 | Endoscopy
; Mammals
|
EI分类号 | Medicine and Pharmacology:461.6
|
Scopus记录号 | 2-s2.0-85116199591
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9536182 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254024 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.The Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong 2.The Department of Electronic and Electrical Engineering,The Southern University of Science and Technology,Shenzhen,China 3.The Shenzhen Research Institute,The Chinese University of Hong Kong,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Xu,Yangxin,Li,Keyu,Meng,Max Q.H.. Unsupervised learning based relative localization for WCE in a deformable tubular environment[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:119-124.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论