题名 | Foot gesture recognition with flexible high-density device based on convolutional neural network |
作者 | |
通讯作者 | Fu,Chenglong |
DOI | |
发表日期 | 2021-07-03
|
会议名称 | 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
|
ISBN | 978-1-6654-4596-2
|
会议录名称 | |
页码 | 306-311
|
会议日期 | JUL 03-05, 2021
|
会议地点 | null,Chongqing,PEOPLES R CHINA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Upper-Limb prosthesis control is a huge challenge for high-level amputees or amputated patients with weak residual muscles signal. Previous researches achieved the control of prosthesis by foot electromyography (EMG). However, low adaptability and gesture classification accuracy due to muscle movement and device limits restrict the performance. Therefore, this paper proposes a flexible high-density wearable device based on convolutional neural network for foot gestures recognition. The flexible wearable device stretches with muscle movement and makes the recognition process more accurate and efficient. Nine classes of foot gestures that intuitively map the movements of prosthesis are classified by the convolutional neural network classifiers. This paper reaches an average classification accuracy of 93.98% for nine classes of foot gestures. High-accuracy recognition based on the flexible wearable device provides a possibility for the control of upper-limb prosthesis. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key R&D Program of China["2018YFB1305400","2018YFC2001601"]
|
WOS研究方向 | Automation & Control Systems
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000728141500051
|
EI入藏号 | 20214010982464
|
EI主题词 | Convolution
; Convolutional neural networks
; Gesture recognition
; Muscle
; Wearable technology
|
EI分类号 | Biological Materials and Tissue Engineering:461.2
; Prosthetics:462.4
; Information Theory and Signal Processing:716.1
|
Scopus记录号 | 2-s2.0-85116191862
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9536141 |
引用统计 |
被引频次[WOS]:5
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254025 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.The Department of Mechanical Engineering,The University of British Columbia,Vancouver,V6T1Z4,Canada 3.The School of Modern Post,Beijing University of Posts and Telecommunications,Beijing,100876,China |
第一作者单位 | 机械与能源工程系 |
通讯作者单位 | 机械与能源工程系 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Lin,Chengyu,Tang,Yuxuan,Zhou,Yong,et al. Foot gesture recognition with flexible high-density device based on convolutional neural network[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:306-311.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论