中文版 | English
题名

Foot gesture recognition with flexible high-density device based on convolutional neural network

作者
通讯作者Fu,Chenglong
DOI
发表日期
2021-07-03
会议名称
6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
ISBN
978-1-6654-4596-2
会议录名称
页码
306-311
会议日期
JUL 03-05, 2021
会议地点
null,Chongqing,PEOPLES R CHINA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Upper-Limb prosthesis control is a huge challenge for high-level amputees or amputated patients with weak residual muscles signal. Previous researches achieved the control of prosthesis by foot electromyography (EMG). However, low adaptability and gesture classification accuracy due to muscle movement and device limits restrict the performance. Therefore, this paper proposes a flexible high-density wearable device based on convolutional neural network for foot gestures recognition. The flexible wearable device stretches with muscle movement and makes the recognition process more accurate and efficient. Nine classes of foot gestures that intuitively map the movements of prosthesis are classified by the convolutional neural network classifiers. This paper reaches an average classification accuracy of 93.98% for nine classes of foot gestures. High-accuracy recognition based on the flexible wearable device provides a possibility for the control of upper-limb prosthesis.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key R&D Program of China["2018YFB1305400","2018YFC2001601"]
WOS研究方向
Automation & Control Systems ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000728141500051
EI入藏号
20214010982464
EI主题词
Convolution ; Convolutional neural networks ; Gesture recognition ; Muscle ; Wearable technology
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Prosthetics:462.4 ; Information Theory and Signal Processing:716.1
Scopus记录号
2-s2.0-85116191862
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9536141
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254025
专题工学院_机械与能源工程系
作者单位
1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.The Department of Mechanical Engineering,The University of British Columbia,Vancouver,V6T1Z4,Canada
3.The School of Modern Post,Beijing University of Posts and Telecommunications,Beijing,100876,China
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Lin,Chengyu,Tang,Yuxuan,Zhou,Yong,et al. Foot gesture recognition with flexible high-density device based on convolutional neural network[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:306-311.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Chengyu]的文章
[Tang,Yuxuan]的文章
[Zhou,Yong]的文章
百度学术
百度学术中相似的文章
[Lin,Chengyu]的文章
[Tang,Yuxuan]的文章
[Zhou,Yong]的文章
必应学术
必应学术中相似的文章
[Lin,Chengyu]的文章
[Tang,Yuxuan]的文章
[Zhou,Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。