题名 | Imbalance-Aware Self-supervised Learning for 3D Radiomic Representations |
作者 | |
通讯作者 | Zhang,Jianguo |
DOI | |
发表日期 | 2021
|
会议名称 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),(MICCAI 2021)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-030-87195-6
|
会议录名称 | |
卷号 | 12902
|
页码 | 36-46
|
会议日期 | 2021.9
|
会议地点 | 法国
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Radiomics can quantify the properties of regions of interest in medical image data. Classically, they account for pre-defined statistics of shape, texture, and other low-level image features. Alternatively, deep learning-based representations are derived from supervised learning but require expensive annotations and often suffer from overfitting and data imbalance issues. In this work, we address the challenge of learning the representation of a 3D medical image for an effective quantification under data imbalance. We propose a self-supervised representation learning framework to learn high-level features of 3D volumes as a complement to existing radiomics features. Specifically, we demonstrate how to learn image representations in a self-supervised fashion using a 3D Siamese network. More importantly, we deal with data imbalance by exploiting two unsupervised strategies: a) sample re-weighting, and b) balancing the composition of training batches. When combining the learned self-supervised feature with traditional radiomics, we show significant improvement in brain tumor classification and lung cancer staging tasks covering MRI and CT imaging modalities. Codes are available in https://github.com/hongweilibran/imbalanced-SSL. |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | TRABIT network under the EU Marie Sklodowska-Curie program[765148]
; Macau University of Science and Technology[FRG-18-020-FI]
; DFG[SFB-824]
|
WOS研究方向 | Computer Science
; Engineering
; Imaging Science & Photographic Technology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Software Engineering
; Engineering, Biomedical
; Imaging Science & Photographic Technology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000712020700004
|
EI入藏号 | 20214110994644
|
EI主题词 | Computerized tomography
; Deep learning
; Magnetic resonance imaging
; Medical computing
; Medical imaging
; Supervised learning
; Textures
|
EI分类号 | Biomedical Engineering:461.1
; Ergonomics and Human Factors Engineering:461.4
; Magnetism: Basic Concepts and Phenomena:701.2
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85116490645
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:13
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254037 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science,Technical University of Munich,Munich,Germany 2.Department of Quantitative Biomedicine,University of Zurich,Zürich,Switzerland 3.ETH Zurich,Zürich,Switzerland 4.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 5.Faculty of Information Technology,Macau University of Science and Technology,Macao,China 6.Klinikum rechts der Isar,Technical University of Munich,Munich,Germany |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Li,Hongwei,Xue,Fei Fei,Chaitanya,Krishna,et al. Imbalance-Aware Self-supervised Learning for 3D Radiomic Representations[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:36-46.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论