中文版 | English
题名

Imbalance-Aware Self-supervised Learning for 3D Radiomic Representations

作者
通讯作者Zhang,Jianguo
DOI
发表日期
2021
会议名称
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),(MICCAI 2021)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-030-87195-6
会议录名称
卷号
12902
页码
36-46
会议日期
2021.9
会议地点
法国
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

Radiomics can quantify the properties of regions of interest in medical image data. Classically, they account for pre-defined statistics of shape, texture, and other low-level image features. Alternatively, deep learning-based representations are derived from supervised learning but require expensive annotations and often suffer from overfitting and data imbalance issues. In this work, we address the challenge of learning the representation of a 3D medical image for an effective quantification under data imbalance. We propose a self-supervised representation learning framework to learn high-level features of 3D volumes as a complement to existing radiomics features. Specifically, we demonstrate how to learn image representations in a self-supervised fashion using a 3D Siamese network. More importantly, we deal with data imbalance by exploiting two unsupervised strategies: a) sample re-weighting, and b) balancing the composition of training batches. When combining the learned self-supervised feature with traditional radiomics, we show significant improvement in brain tumor classification and lung cancer staging tasks covering MRI and CT imaging modalities. Codes are available in https://github.com/hongweilibran/imbalanced-SSL.

学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
TRABIT network under the EU Marie Sklodowska-Curie program[765148] ; Macau University of Science and Technology[FRG-18-020-FI] ; DFG[SFB-824]
WOS研究方向
Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Biomedical ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000712020700004
EI入藏号
20214110994644
EI主题词
Computerized tomography ; Deep learning ; Magnetic resonance imaging ; Medical computing ; Medical imaging ; Supervised learning ; Textures
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85116490645
来源库
Scopus
引用统计
被引频次[WOS]:13
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254037
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,Technical University of Munich,Munich,Germany
2.Department of Quantitative Biomedicine,University of Zurich,Zürich,Switzerland
3.ETH Zurich,Zürich,Switzerland
4.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
5.Faculty of Information Technology,Macau University of Science and Technology,Macao,China
6.Klinikum rechts der Isar,Technical University of Munich,Munich,Germany
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Li,Hongwei,Xue,Fei Fei,Chaitanya,Krishna,et al. Imbalance-Aware Self-supervised Learning for 3D Radiomic Representations[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:36-46.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Hongwei]的文章
[Xue,Fei Fei]的文章
[Chaitanya,Krishna]的文章
百度学术
百度学术中相似的文章
[Li,Hongwei]的文章
[Xue,Fei Fei]的文章
[Chaitanya,Krishna]的文章
必应学术
必应学术中相似的文章
[Li,Hongwei]的文章
[Xue,Fei Fei]的文章
[Chaitanya,Krishna]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。