中文版 | English
题名

USCL: Pretraining Deep Ultrasound Image Diagnosis Model Through Video Contrastive Representation Learning

作者
通讯作者Liu,Li
DOI
发表日期
2021
会议名称
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-030-87236-6
会议录名称
卷号
12908
页码
627-637
会议日期
SEP 27-OCT 01, 2021
会议地点
null,null,ELECTR NETWORK
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Most deep neural networks (DNNs) based ultrasound (US) medical image analysis models use pretrained backbones (e.g., ImageNet) for better model generalization. However, the domain gap between natural and medical images causes an inevitable performance bottleneck. To alleviate this problem, an US dataset named US-4 is constructed for direct pretraining on the same domain. It contains over 23,000 images from four US video sub-datasets. To learn robust features from US-4, we propose an US semi-supervised contrastive learning method, named USCL, for pretraining. In order to avoid high similarities between negative pairs as well as mine abundant visual features from limited US videos, USCL adopts a sample pair generation method to enrich the feature involved in a single step of contrastive optimization. Extensive experiments on several downstream tasks show the superiority of USCL pretraining against ImageNet pretraining and other state-of-the-art (SOTA) pretraining approaches. In particular, USCL pretrained backbone achieves fine-tuning accuracy of over 94% on POCUS dataset, which is 10% higher than 84% of the ImageNet pretrained model. The source codes of this work are available at https://github.com/983632847/USCL.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Key-Area Research and Development Program of Guangdong Province[2020B0101350001] ; GuangDong Basic and Applied Basic Research Foundation[2020A1515110376]
WOS研究方向
Acoustics ; Computer Science ; Engineering ; General & Internal Medicine ; Microscopy ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Acoustics ; Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Medicine, General & Internal ; Microscopy ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000712019200060
EI入藏号
20214110994527
EI主题词
Deep neural networks ; Diagnosis ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Imaging Techniques:746 ; Ultrasonic Waves:753.1
Scopus记录号
2-s2.0-85116489624
来源库
Scopus
引用统计
被引频次[WOS]:20
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254038
专题南方科技大学
南方科技大学第二附属医院
作者单位
1.School of Data Science,Fudan university,Shanghai,China
2.Institute of Information Engineering,Chinese Academy of Sciences,Beijing,China
3.Shenzhen Research Institute of Big Data,Shenzhen,China
4.The Chinese University of Hong Kong Shenzhen,Shenzhen,China
5.Shenzhen Third People’s Hospital,Shenzhen,China
6.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Chen,Yixiong,Zhang,Chunhui,Liu,Li,et al. USCL: Pretraining Deep Ultrasound Image Diagnosis Model Through Video Contrastive Representation Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:627-637.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Yixiong]的文章
[Zhang,Chunhui]的文章
[Liu,Li]的文章
百度学术
百度学术中相似的文章
[Chen,Yixiong]的文章
[Zhang,Chunhui]的文章
[Liu,Li]的文章
必应学术
必应学术中相似的文章
[Chen,Yixiong]的文章
[Zhang,Chunhui]的文章
[Liu,Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。