题名 | USCL: Pretraining Deep Ultrasound Image Diagnosis Model Through Video Contrastive Representation Learning |
作者 | |
通讯作者 | Liu,Li |
DOI | |
发表日期 | 2021
|
会议名称 | International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-030-87236-6
|
会议录名称 | |
卷号 | 12908
|
页码 | 627-637
|
会议日期 | SEP 27-OCT 01, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Most deep neural networks (DNNs) based ultrasound (US) medical image analysis models use pretrained backbones (e.g., ImageNet) for better model generalization. However, the domain gap between natural and medical images causes an inevitable performance bottleneck. To alleviate this problem, an US dataset named US-4 is constructed for direct pretraining on the same domain. It contains over 23,000 images from four US video sub-datasets. To learn robust features from US-4, we propose an US semi-supervised contrastive learning method, named USCL, for pretraining. In order to avoid high similarities between negative pairs as well as mine abundant visual features from limited US videos, USCL adopts a sample pair generation method to enrich the feature involved in a single step of contrastive optimization. Extensive experiments on several downstream tasks show the superiority of USCL pretraining against ImageNet pretraining and other state-of-the-art (SOTA) pretraining approaches. In particular, USCL pretrained backbone achieves fine-tuning accuracy of over 94% on POCUS dataset, which is 10% higher than 84% of the ImageNet pretrained model. The source codes of this work are available at https://github.com/983632847/USCL. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Key-Area Research and Development Program of Guangdong Province[2020B0101350001]
; GuangDong Basic and Applied Basic Research Foundation[2020A1515110376]
|
WOS研究方向 | Acoustics
; Computer Science
; Engineering
; General & Internal Medicine
; Microscopy
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Acoustics
; Computer Science, Artificial Intelligence
; Engineering, Biomedical
; Medicine, General & Internal
; Microscopy
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000712019200060
|
EI入藏号 | 20214110994527
|
EI主题词 | Deep neural networks
; Diagnosis
; Medical imaging
|
EI分类号 | Biomedical Engineering:461.1
; Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Imaging Techniques:746
; Ultrasonic Waves:753.1
|
Scopus记录号 | 2-s2.0-85116489624
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:20
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254038 |
专题 | 南方科技大学 南方科技大学第二附属医院 |
作者单位 | 1.School of Data Science,Fudan university,Shanghai,China 2.Institute of Information Engineering,Chinese Academy of Sciences,Beijing,China 3.Shenzhen Research Institute of Big Data,Shenzhen,China 4.The Chinese University of Hong Kong Shenzhen,Shenzhen,China 5.Shenzhen Third People’s Hospital,Shenzhen,China 6.Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Chen,Yixiong,Zhang,Chunhui,Liu,Li,et al. USCL: Pretraining Deep Ultrasound Image Diagnosis Model Through Video Contrastive Representation Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:627-637.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论