中文版 | English
题名

Categorical Relation-Preserving Contrastive Knowledge Distillation for Medical Image Classification

作者
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12905
页码
163-173
摘要
The amount of medical images for training deep classification models is typically very scarce, making these deep models prone to overfit the training data. Studies showed that knowledge distillation (KD), especially the mean-teacher framework which is more robust to perturbations, can help mitigate the over-fitting effect. However, directly transferring KD from computer vision to medical image classification yields inferior performance as medical images suffer from higher intra-class variance and class imbalance. To address these issues, we propose a novel Categorical Relation-preserving Contrastive Knowledge Distillation (CRCKD) algorithm, which takes the commonly used mean-teacher model as the supervisor. Specifically, we propose a novel Class-guided Contrastive Distillation (CCD) module to pull closer positive image pairs from the same class in the teacher and student models, while pushing apart negative image pairs from different classes. With this regularization, the feature distribution of the student model shows higher intra-class similarity and inter-class variance. Besides, we propose a Categorical Relation Preserving (CRP) loss to distill the teacher’s relational knowledge in a robust and class-balanced manner. With the contribution of the CCD and CRP, our CRCKD algorithm can distill the relational knowledge more comprehensively. Extensive experiments on the HAM10000 and APTOS datasets demonstrate the superiority of the proposed CRCKD method. The source code is available at https://github.com/hathawayxxh/CRCKD.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Medical Informatics ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Biomedical ; Medical Informatics ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000712025900016
EI入藏号
20214110994437
EI主题词
Computer vision ; Image classification ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2 ; Imaging Techniques:746 ; Chemical Operations:802.3
Scopus记录号
2-s2.0-85116469063
来源库
Scopus
引用统计
被引频次[WOS]:24
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254043
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering,The Chinese University of Hong Kong,Shatin,Hong Kong
2.Department of Information Engineering,The Chinese University of Hong Kong,Shatin,Hong Kong
3.School of Informatics,Xiamen University,Xiamen,China
4.Department of Electrical Engineering,City University of Hong Kong,Kowloon,Hong Kong
5.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Xing,Xiaohan,Hou,Yuenan,Li,Hang,et al. Categorical Relation-Preserving Contrastive Knowledge Distillation for Medical Image Classification[C],2021:163-173.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xing,Xiaohan]的文章
[Hou,Yuenan]的文章
[Li,Hang]的文章
百度学术
百度学术中相似的文章
[Xing,Xiaohan]的文章
[Hou,Yuenan]的文章
[Li,Hang]的文章
必应学术
必应学术中相似的文章
[Xing,Xiaohan]的文章
[Hou,Yuenan]的文章
[Li,Hang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。