中文版 | English
题名

A Multi-branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation

作者
通讯作者Higashita,Risa
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12901 LNCS
页码
99-108
摘要
Corneal endothelial cell segmentation plays a vital role in quantifying clinical indicators such as cell density, coefficient of variation, and hexagonality. However, the corneal endothelium’s uneven reflection and the subject’s tremor and movement cause blurred cell edges in the image, which is difficult to segment, and need more details and context information to release this problem. Due to the limited receptive field of local convolution and continuous downsampling, the existing deep learning segmentation methods cannot make full use of global context and miss many details. This paper proposes a Multi-Branch hybrid Transformer Network (MBT-Net) based on the transformer and body-edge branch. Firstly, we use the convolutional block to focus on local texture feature extraction and establish long-range dependencies over space, channel, and layer by the transformer and residual connection. Besides, we use the body-edge branch to promote local consistency and to provide edge position information. On the self-collected dataset TM-EM3000 and public Alisarine dataset, compared with other State-Of-The-Art (SOTA) methods, the proposed method achieves an improvement.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20214110990350
EI主题词
Cytology ; Deep learning ; Endothelial cells ; Image segmentation ; Medical imaging ; Textures
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Biology:461.9 ; Information Theory and Signal Processing:716.1 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85116454101
来源库
Scopus
引用统计
被引频次[WOS]:39
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254045
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Ningbo,China
3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China
5.Tomey Corporation,Nagoya,451-0051,Japan
6.Global Big Data Technologies Centre,University of Technology Sydney,Ultimo,Australia
7.Inception Institute of Artificial Intelligence,Abu Dhabi,United Arab Emirates
8.Intelligent Healthcare Unit,Baidu, Beijing,100085,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang,Yinglin,Higashita,Risa,Fu,Huazhu,et al. A Multi-branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation[C],2021:99-108.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yinglin]的文章
[Higashita,Risa]的文章
[Fu,Huazhu]的文章
百度学术
百度学术中相似的文章
[Zhang,Yinglin]的文章
[Higashita,Risa]的文章
[Fu,Huazhu]的文章
必应学术
必应学术中相似的文章
[Zhang,Yinglin]的文章
[Higashita,Risa]的文章
[Fu,Huazhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。