题名 | A Multi-branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation |
作者 | |
通讯作者 | Higashita,Risa |
DOI | |
发表日期 | 2021
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12901 LNCS
|
页码 | 99-108
|
摘要 | Corneal endothelial cell segmentation plays a vital role in quantifying clinical indicators such as cell density, coefficient of variation, and hexagonality. However, the corneal endothelium’s uneven reflection and the subject’s tremor and movement cause blurred cell edges in the image, which is difficult to segment, and need more details and context information to release this problem. Due to the limited receptive field of local convolution and continuous downsampling, the existing deep learning segmentation methods cannot make full use of global context and miss many details. This paper proposes a Multi-Branch hybrid Transformer Network (MBT-Net) based on the transformer and body-edge branch. Firstly, we use the convolutional block to focus on local texture feature extraction and establish long-range dependencies over space, channel, and layer by the transformer and residual connection. Besides, we use the body-edge branch to promote local consistency and to provide edge position information. On the self-collected dataset TM-EM3000 and public Alisarine dataset, compared with other State-Of-The-Art (SOTA) methods, the proposed method achieves an improvement. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20214110990350
|
EI主题词 | Cytology
; Deep learning
; Endothelial cells
; Image segmentation
; Medical imaging
; Textures
|
EI分类号 | Biomedical Engineering:461.1
; Biological Materials and Tissue Engineering:461.2
; Ergonomics and Human Factors Engineering:461.4
; Biology:461.9
; Information Theory and Signal Processing:716.1
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85116454101
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:39
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254045 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Ningbo,China 3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 4.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China 5.Tomey Corporation,Nagoya,451-0051,Japan 6.Global Big Data Technologies Centre,University of Technology Sydney,Ultimo,Australia 7.Inception Institute of Artificial Intelligence,Abu Dhabi,United Arab Emirates 8.Intelligent Healthcare Unit,Baidu, Beijing,100085,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Yinglin,Higashita,Risa,Fu,Huazhu,et al. A Multi-branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation[C],2021:99-108.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论