中文版 | English
题名

HRENet: A Hard Region Enhancement Network for Polyp Segmentation

作者
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12901 LNCS
页码
559-568
摘要
Automatic polyp segmentation in the screening system is of great practical significance for the diagnosis and treatment of colorectal cancer. However, accurate segmentation in the colonoscopy images still remains a challenge. In this paper, we propose a hard region enhancement network (HRENet) based on an encoder-decoder framework. Specifically, we design an informative context enhancement (ICE) module to explore and intensify the features from the lower-level encoder with explicit attention on hard regions. We also develop an adaptive feature aggregation (AFA) module to select and aggregate the features from multiple semantic levels. In addition, we train the model with a proposed edge and structure consistency aware loss (ESCLoss) to further boost the performance. Extensive experiments on three public datasets show that our proposed algorithm outperforms the state-of-the-art approaches in terms of both learning ability and generalization capability. In particular, our HRENet achieves a mIoU of 92.11% and a Dice of 92.56% on Kvasir-SEG dataset. And the model trained with Kvasir-SEG and CVC-Clinic DB retains a high inference performance on the unseen dataset CVC-Colon DB with a mIoU of 88.42% and a Dice of 85.26%. The code is available at: https://github.com/CathySH/HRENet.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20214110990397
EI主题词
Deep learning ; Diseases ; Image segmentation ; Medical imaging ; Semantics ; Signal encoding
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85116436998
来源库
Scopus
引用统计
被引频次[WOS]:26
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254046
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering,The Chinese University of Hong Kong,Sha Tin,Hong Kong
2.Department of Radiation Oncology,Stanford University,Stanford,United States
3.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Shen,Yutian,Jia,Xiao,Meng,Max Q.H.. HRENet: A Hard Region Enhancement Network for Polyp Segmentation[C],2021:559-568.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen,Yutian]的文章
[Jia,Xiao]的文章
[Meng,Max Q.H.]的文章
百度学术
百度学术中相似的文章
[Shen,Yutian]的文章
[Jia,Xiao]的文章
[Meng,Max Q.H.]的文章
必应学术
必应学术中相似的文章
[Shen,Yutian]的文章
[Jia,Xiao]的文章
[Meng,Max Q.H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。