题名 | A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder |
作者 | |
通讯作者 | Zhang, Zhen; Jin, Wenfei |
共同第一作者 | Luo, Zixiang; Xu, Chenyu |
发表日期 | 2021-10-08
|
DOI | |
发表期刊 | |
ISSN | 2045-2322
|
卷号 | 11期号:1 |
摘要 | Dimensionality reduction is crucial for the visualization and interpretation of the high-dimensional single-cell RNA sequencing (scRNA-seq) data. However, preserving topological structure among cells to low dimensional space remains a challenge. Here, we present the single-cell graph autoencoder (scGAE), a dimensionality reduction method that preserves topological structure in scRNA-seq data. scGAE builds a cell graph and uses a multitask-oriented graph autoencoder to preserve topological structure information and feature information in scRNA-seq data simultaneously. We further extended scGAE for scRNA-seq data visualization, clustering, and trajectory inference. Analyses of simulated data showed that scGAE accurately reconstructs developmental trajectory and separates discrete cell clusters under different scenarios, outperforming recently developed deep learning methods. Furthermore, implementation of scGAE on empirical data showed scGAE provided novel insights into cell developmental lineages and preserved inter-cluster distances. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Key R&D Program of China[2018YFC1004500]
; National Natural Science Foundation of China[81872330,31741077]
; Shenzhen Innovation Committee of Science and Technology[
|
WOS研究方向 | Science & Technology - Other Topics
|
WOS类目 | Multidisciplinary Sciences
|
WOS记录号 | WOS:000705243600019
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:29
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254191 |
专题 | 生命科学学院 理学院_数学系 生命科学学院_生物系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.Southern Univ Sci & Technol, Sch Life Sci, Shenzhen Key Lab Gene Regulat & Syst Biol, Shenzhen 518055, Peoples R China 2.Iowa State Univ, Dept Elect Engn, Ames, IA 50011 USA 3.Southern Univ Sci & Technol, Int Ctr Math, Natl Ctr Appl Math Shenzhen,Dept Math, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China |
第一作者单位 | 生命科学学院 |
通讯作者单位 | 数学系; 生命科学学院 |
第一作者的第一单位 | 生命科学学院 |
推荐引用方式 GB/T 7714 |
Luo, Zixiang,Xu, Chenyu,Zhang, Zhen,et al. A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder[J]. Scientific Reports,2021,11(1).
|
APA |
Luo, Zixiang,Xu, Chenyu,Zhang, Zhen,&Jin, Wenfei.(2021).A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder.Scientific Reports,11(1).
|
MLA |
Luo, Zixiang,et al."A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder".Scientific Reports 11.1(2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Luo_et_al-2021-Scien(1862KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论