中文版 | English
题名

Unpaired MR Image Homogenisation by Disentangled Representations and Its Uncertainty

作者
通讯作者Zhang,Jianguo
DOI
发表日期
2021
会议名称
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(MICCAI 2021)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-030-87734-7
会议录名称
卷号
12959 LNCS
页码
44-53
会议日期
2021.9
会议地点
法国
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

Inter-scanner and inter-protocol differences in MRI datasets are known to induce significant quantification variability. Hence data homogenisation is crucial for a reliable combination of data or observations from different sources. Existing homogenisation methods rely on pairs of images to learn a mapping from a source domain to a reference domain. In real-world, we only have access to unpaired data from the source and reference domains. In this paper, we successfully address this scenario by proposing an unsupervised image-to-image translation framework which models the complex mapping by disentangling the image space into a common content space and a scanner-specific one. We perform image quality enhancement among two MR scanners, enriching the structural information and reducing noise level. We evaluate our method on both healthy controls and multiple sclerosis (MS) cohorts and have seen both visual and quantitative improvement over state-of-the-art GAN-based methods while retaining regions of diagnostic importance such as lesions. In addition, for the first time, we quantify the uncertainty in the unsupervised homogenisation pipeline to enhance the interpretability. Codes are available: https://github.com/hongweilibran/Multi-modal-medical-image-synthesis.

学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
DFG[SFB-824]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000867634400005
EI入藏号
20214211030535
EI主题词
Diagnosis ; Image enhancement ; Magnetic resonance imaging ; Mapping ; Medical computing ; Medical imaging
EI分类号
Surveying:405.3 ; Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Computer Applications:723.5 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85117123024
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254282
专题工学院_计算机科学与工程系
作者单位
1.Department of Quantitative Biomedicine,University of Zurich,Zürich,Switzerland
2.Department of Informatics,Technical University of Munich,Munich,Germany
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
4.Department of Medical Imaging,First Affiliated Hospital of Xi’an Jiaotong University,Xi’an,China
5.Klinikum rechts der Isar,Technical University of Munich,Munich,Germany
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Li,Hongwei,Gopal,Sunita,Sekuboyina,Anjany,et al. Unpaired MR Image Homogenisation by Disentangled Representations and Its Uncertainty[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:44-53.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Hongwei]的文章
[Gopal,Sunita]的文章
[Sekuboyina,Anjany]的文章
百度学术
百度学术中相似的文章
[Li,Hongwei]的文章
[Gopal,Sunita]的文章
[Sekuboyina,Anjany]的文章
必应学术
必应学术中相似的文章
[Li,Hongwei]的文章
[Gopal,Sunita]的文章
[Sekuboyina,Anjany]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。