题名 | Unpaired MR Image Homogenisation by Disentangled Representations and Its Uncertainty |
作者 | |
通讯作者 | Zhang,Jianguo |
DOI | |
发表日期 | 2021
|
会议名称 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(MICCAI 2021)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-030-87734-7
|
会议录名称 | |
卷号 | 12959 LNCS
|
页码 | 44-53
|
会议日期 | 2021.9
|
会议地点 | 法国
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Inter-scanner and inter-protocol differences in MRI datasets are known to induce significant quantification variability. Hence data homogenisation is crucial for a reliable combination of data or observations from different sources. Existing homogenisation methods rely on pairs of images to learn a mapping from a source domain to a reference domain. In real-world, we only have access to unpaired data from the source and reference domains. In this paper, we successfully address this scenario by proposing an unsupervised image-to-image translation framework which models the complex mapping by disentangling the image space into a common content space and a scanner-specific one. We perform image quality enhancement among two MR scanners, enriching the structural information and reducing noise level. We evaluate our method on both healthy controls and multiple sclerosis (MS) cohorts and have seen both visual and quantitative improvement over state-of-the-art GAN-based methods while retaining regions of diagnostic importance such as lesions. In addition, for the first time, we quantify the uncertainty in the unsupervised homogenisation pipeline to enhance the interpretability. Codes are available: https://github.com/hongweilibran/Multi-modal-medical-image-synthesis. |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | DFG[SFB-824]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867634400005
|
EI入藏号 | 20214211030535
|
EI主题词 | Diagnosis
; Image enhancement
; Magnetic resonance imaging
; Mapping
; Medical computing
; Medical imaging
|
EI分类号 | Surveying:405.3
; Biomedical Engineering:461.1
; Medicine and Pharmacology:461.6
; Magnetism: Basic Concepts and Phenomena:701.2
; Computer Applications:723.5
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85117123024
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254282 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Quantitative Biomedicine,University of Zurich,Zürich,Switzerland 2.Department of Informatics,Technical University of Munich,Munich,Germany 3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 4.Department of Medical Imaging,First Affiliated Hospital of Xi’an Jiaotong University,Xi’an,China 5.Klinikum rechts der Isar,Technical University of Munich,Munich,Germany |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Li,Hongwei,Gopal,Sunita,Sekuboyina,Anjany,et al. Unpaired MR Image Homogenisation by Disentangled Representations and Its Uncertainty[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:44-53.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论