题名 | Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices |
作者 | |
通讯作者 | Xu,Xiaodong; Li,Jiangyu |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 0935-9648
|
EISSN | 1521-4095
|
卷号 | 33 |
摘要 | Moiré superlattices of 2D materials with a small twist angle are thought to exhibit appreciable flexoelectric effect, though unambiguous confirmation of their flexoelectricity is challenging due to artifacts associated with commonly used piezoresponse force microscopy (PFM). For example, unexpectedly small phase contrast (≈8°) between opposite flexoelectric polarizations is reported in twisted bilayer graphene (tBG), though theoretically predicted value is 180°. Here a methodology is developed to extract intrinsic moiré flexoelectricity using twisted double bilayer graphene (tDBG) as a model system, probed by lateral PFM. For small twist angle samples, it is found that a vectorial decomposition is essential to recover the small intrinsic flexoelectric response at domain walls from a large background signal. The obtained threefold symmetry of commensurate domains with significant flexoelectric response at domain walls is fully consistent with the theoretical calculations. Incommensurate domains in tDBG with relatively large twist angles can also be observed by this technique. A general strategy is provided here for unraveling intrinsic flexoelectricity in van der Waals moiré superlattices while providing insights into engineered symmetry breaking in centrosymmetric materials. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 通讯
|
WOS记录号 | WOS:000705118100001
|
EI入藏号 | 20214111012081
|
EI主题词 | Electromechanical coupling
; Graphene
; Scanning probe microscopy
; Van der Waals forces
|
EI分类号 | Nanotechnology:761
; Chemistry:801
; Physical Chemistry:801.4
; Chemical Products Generally:804
; Atomic and Molecular Physics:931.3
|
ESI学科分类 | MATERIALS SCIENCE
|
Scopus记录号 | 2-s2.0-85116744268
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:32
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254291 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Department of Physics,University of Washington,Seattle,98195,United States 2.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.Shenzhen Key Laboratory of Nanobiomechanics,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China 4.Department of Chemistry,University of Washington,Seattle,98195,United States 5.Research Center for Functional Materials,National Institute for Materials Science,Tsukuba,1-1 Namiki,305-0044,Japan 6.International Center for Materials Nanoarchitectonics,National Institute for Materials Science,Tsukuba,1-1 Namiki,305-0044,Japan 7.Department of Materials Science and Engineering,University of Washington,Seattle,98195,United States 8.Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 材料科学与工程系 |
通讯作者单位 | 材料科学与工程系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Li,Yuhao,Wang,Xiao,Tang,Deqi,et al. Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices[J]. ADVANCED MATERIALS,2021,33.
|
APA |
Li,Yuhao.,Wang,Xiao.,Tang,Deqi.,Wang,Xi.,Watanabe,Kenji.,...&Li,Jiangyu.(2021).Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices.ADVANCED MATERIALS,33.
|
MLA |
Li,Yuhao,et al."Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices".ADVANCED MATERIALS 33(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论