中文版 | English
题名

Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices

作者
通讯作者Xu,Xiaodong; Li,Jiangyu
发表日期
2021
DOI
发表期刊
ISSN
0935-9648
EISSN
1521-4095
卷号33
摘要
Moiré superlattices of 2D materials with a small twist angle are thought to exhibit appreciable flexoelectric effect, though unambiguous confirmation of their flexoelectricity is challenging due to artifacts associated with commonly used piezoresponse force microscopy (PFM). For example, unexpectedly small phase contrast (≈8°) between opposite flexoelectric polarizations is reported in twisted bilayer graphene (tBG), though theoretically predicted value is 180°. Here a methodology is developed to extract intrinsic moiré flexoelectricity using twisted double bilayer graphene (tDBG) as a model system, probed by lateral PFM. For small twist angle samples, it is found that a vectorial decomposition is essential to recover the small intrinsic flexoelectric response at domain walls from a large background signal. The obtained threefold symmetry of commensurate domains with significant flexoelectric response at domain walls is fully consistent with the theoretical calculations. Incommensurate domains in tDBG with relatively large twist angles can also be observed by this technique. A general strategy is provided here for unraveling intrinsic flexoelectricity in van der Waals moiré superlattices while providing insights into engineered symmetry breaking in centrosymmetric materials.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
通讯
WOS记录号
WOS:000705118100001
EI入藏号
20214111012081
EI主题词
Electromechanical coupling ; Graphene ; Scanning probe microscopy ; Van der Waals forces
EI分类号
Nanotechnology:761 ; Chemistry:801 ; Physical Chemistry:801.4 ; Chemical Products Generally:804 ; Atomic and Molecular Physics:931.3
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85116744268
来源库
Scopus
引用统计
被引频次[WOS]:32
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254291
专题工学院_材料科学与工程系
作者单位
1.Department of Physics,University of Washington,Seattle,98195,United States
2.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Shenzhen Key Laboratory of Nanobiomechanics,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China
4.Department of Chemistry,University of Washington,Seattle,98195,United States
5.Research Center for Functional Materials,National Institute for Materials Science,Tsukuba,1-1 Namiki,305-0044,Japan
6.International Center for Materials Nanoarchitectonics,National Institute for Materials Science,Tsukuba,1-1 Namiki,305-0044,Japan
7.Department of Materials Science and Engineering,University of Washington,Seattle,98195,United States
8.Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位材料科学与工程系
通讯作者单位材料科学与工程系;  南方科技大学
推荐引用方式
GB/T 7714
Li,Yuhao,Wang,Xiao,Tang,Deqi,et al. Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices[J]. ADVANCED MATERIALS,2021,33.
APA
Li,Yuhao.,Wang,Xiao.,Tang,Deqi.,Wang,Xi.,Watanabe,Kenji.,...&Li,Jiangyu.(2021).Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices.ADVANCED MATERIALS,33.
MLA
Li,Yuhao,et al."Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices".ADVANCED MATERIALS 33(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Yuhao]的文章
[Wang,Xiao]的文章
[Tang,Deqi]的文章
百度学术
百度学术中相似的文章
[Li,Yuhao]的文章
[Wang,Xiao]的文章
[Tang,Deqi]的文章
必应学术
必应学术中相似的文章
[Li,Yuhao]的文章
[Wang,Xiao]的文章
[Tang,Deqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。