中文版 | English
题名

Research Article Machine Learning for Investigation on Endocrine-Disrupting Chemicals with Gestational Age and Delivery Time in a Longitudinal Cohort

作者
通讯作者Xu, Shunqing; Cai, Zongwei
发表日期
2021-10-18
DOI
发表期刊
EISSN
2639-5274
卷号2021
摘要
Endocrine-disrupting chemicals (EDCs) are widespread environmental chemicals that are often considered as risk factors with weak activity on the hormone-dependent process of pregnancy. However, the adverse effects of EDCs in the body of pregnant women were underestimated. The interaction between dynamic concentration of EDCs and endogenous hormones (EHs) on gestational age and delivery time remains unclear. To define a temporal interaction between the EDCs and EHs during pregnancy, comprehensive, unbiased, and quantitative analyses of 33 EDCs and 14 EHs were performed for a longitudinal cohort with 2317 pregnant women. We developed a machine learning model with the dynamic concentration information of EDCs and EHs to predict gestational age with high accuracy in the longitudinal cohort of pregnant women. The optimal combination of EHs and EDCs can identify when labor occurs (time to delivery within two and four weeks, AUROC of 0.82). Our results revealed that the bisphenols and phthalates are more potent than partial EHs for gestational age or delivery time. This study represents the use of machine learning methods for quantitative analysis of pregnancy-related EDCs and EHs for understanding the EDCs' mixture effect on pregnancy with potential clinical utilities.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation of China[21904058] ; National Key Research and Development Program of China[2019YFC1804602] ; Department of Education of Guangdong Province[2020KZDZX1183]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:000709831200001
出版者
EI入藏号
20214411085160
EI主题词
Chemicals ; Endocrine disrupters ; Machine learning
EI分类号
Medicine and Pharmacology:461.6 ; Health Care:461.7 ; Chemical Agents and Basic Industrial Chemicals:803 ; Chemical Products Generally:804
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254463
专题南方科技大学医学院
前沿与交叉科学研究院
作者单位
1.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Sch Med, Shenzhen, Peoples R China
2.Hong Kong Baptist Univ, Dept Chem, State Key Lab Environm & Biol Anal, Hong Kong, Peoples R China
3.Nankai Univ, Coll Environm Sci & Engn, Key Lab Pollut Proc & Environm Criteria, Minist Educ, Tianjin 300350, Peoples R China
4.Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Publ Hlth, Key Lab Environm & Hlth,Minist Educ, Wuhan 430030, Hubei, Peoples R China
5.Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Publ Hlth, Minist Environm Protect, Wuhan 430030, Hubei, Peoples R China
6.Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Publ Hlth, State Key Lab Environm Hlth, Wuhan 430030, Hubei, Peoples R China
第一作者单位南方科技大学医学院;  前沿与交叉科学研究院
第一作者的第一单位南方科技大学医学院;  前沿与交叉科学研究院
推荐引用方式
GB/T 7714
Luan, Hemi,Zhao, Hongzhi,Li, Jiufeng,et al. Research Article Machine Learning for Investigation on Endocrine-Disrupting Chemicals with Gestational Age and Delivery Time in a Longitudinal Cohort[J]. RESEARCH,2021,2021.
APA
Luan, Hemi.,Zhao, Hongzhi.,Li, Jiufeng.,Zhou, Yanqiu.,Fang, Jing.,...&Cai, Zongwei.(2021).Research Article Machine Learning for Investigation on Endocrine-Disrupting Chemicals with Gestational Age and Delivery Time in a Longitudinal Cohort.RESEARCH,2021.
MLA
Luan, Hemi,et al."Research Article Machine Learning for Investigation on Endocrine-Disrupting Chemicals with Gestational Age and Delivery Time in a Longitudinal Cohort".RESEARCH 2021(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luan, Hemi]的文章
[Zhao, Hongzhi]的文章
[Li, Jiufeng]的文章
百度学术
百度学术中相似的文章
[Luan, Hemi]的文章
[Zhao, Hongzhi]的文章
[Li, Jiufeng]的文章
必应学术
必应学术中相似的文章
[Luan, Hemi]的文章
[Zhao, Hongzhi]的文章
[Li, Jiufeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。