题名 | A weak version of Kirillov's conjecture on Hecke–Grothendieck polynomials |
作者 | |
通讯作者 | Chen,Yuqun |
发表日期 | 2022-02-01
|
DOI | |
发表期刊 | |
ISSN | 0097-3165
|
EISSN | 1096-0899
|
卷号 | 186 |
摘要 | Hecke-Grothendieck polynomials were introduced by Kirillov as a common generalization of Schubert polynomials, dual α-Grothendieck polynomials, Di Francesco–Zinn–Justin polynomials, etc. Then Kirillov conjectured that the coefficients of every generalized Hecke-Grothendieck polynomial are nonnegative combinations of certain parameters. Here we prove a weak version of Kirillov's conjecture, that is, under certain conditions, every Hecke-Grothendieck polynomial has only nonnegative integer coefficients. In particular, the proof of this weak version of Kirillov's conjecture serves as a unified proof for the fact that all the Schubert polynomials, dual α-Grothendieck polynomials, and Di Francesco–Zinn–Justin polynomials have only nonnegative coefficients. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS记录号 | WOS:000710310600004
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85117622060
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254482 |
专题 | 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.School of Mathematical Sciences,South China Normal University,Guangzhou,510631,China 2.International Center for Mathematics,SUSTech,Shenzhen,China |
第一作者单位 | 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
通讯作者单位 | 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
推荐引用方式 GB/T 7714 |
Zhang,Zerui,Chen,Yuqun. A weak version of Kirillov's conjecture on Hecke–Grothendieck polynomials[J]. JOURNAL OF COMBINATORIAL THEORY SERIES A,2022,186.
|
APA |
Zhang,Zerui,&Chen,Yuqun.(2022).A weak version of Kirillov's conjecture on Hecke–Grothendieck polynomials.JOURNAL OF COMBINATORIAL THEORY SERIES A,186.
|
MLA |
Zhang,Zerui,et al."A weak version of Kirillov's conjecture on Hecke–Grothendieck polynomials".JOURNAL OF COMBINATORIAL THEORY SERIES A 186(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论