中文版 | English
题名

Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning

作者
通讯作者Zhou, Jiajia
发表日期
2021-10-21
DOI
发表期刊
ISSN
1948-7185
卷号12期号:41页码:10242-10248
摘要
Highly controlled synthesis of upconversion nanoparticles (UCNPs) can be achieved in the heterogeneous design, so that a library of optical properties can be arbitrarily produced by depositing multiple lanthanide ions. Such a control offers the potential in creating nanoscale barcodes carrying high-capacity information. With the increasing creation of optical information, it poses more challenges in decoding them in an accurate, high-throughput, and speedy fashion. Here, we reported that the deep-learning approach can recognize the complexity of the optical fingerprints from different UCNPs. Under a wide-field microscope, the lifetime profiles of hundreds of single nanoparticles can be collected at once, which offers a sufficient amount of data to develop deep-learning algorithms. We demonstrated that high accuracies of over 90% can be achieved in classifying 14 kinds of UCNPs. This work suggests new opportunities in handling the diverse properties of nanoscale optical barcodes toward the establishment of vast luminescent information carriers.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
其他
资助项目
Australian Research Council Discovery Early Career Researcher Award Scheme[DE180100669] ; Australian Research Council Laureate Fellowship Program["FL210100180","FL190100149"] ; China Scholarship Council Scholarships[201508530231,201706020170] ; Australia-China Joint Research Centre for Point-of-Care Testing["ACSRF65827","2017YFE0132300"] ; Science and Technology Innovation Commission of Shenzhen[KQTD20170810110913065] ; National Natural Science Foundation of China[61729501] ; CAS/SAFEA International Partnership Program for Creative Research Teams and Major International (Regional) Joint Research Project of NSFC[51720105015]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000711025300033
出版者
EI入藏号
20214411096015
EI主题词
Deep learning ; Learning algorithms ; Nanoparticles ; Optical properties ; Synthesis (chemical)
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Machine Learning:723.4.2 ; Light/Optics:741.1 ; Nanotechnology:761 ; Chemical Reactions:802.2 ; Solid State Physics:933
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254785
专题工学院_生物医学工程系
作者单位
1.Univ Technol Sydney, Fac Sci, Inst Biomed Mat & Devices IBMD, Sydney, NSW 2007, Australia
2.Univ Technol Sydney, Australian Artificial Intelligence Inst, Sydney, NSW 2007, Australia
3.Southern Univ Sci & Technol, UTS SUStech Joint Res Ctr Biomed Mat & Devices, Dept Biomed Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Liao, Jiayan,Zhou, Jiajia,Song, Yiliao,et al. Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning[J]. Journal of Physical Chemistry Letters,2021,12(41):10242-10248.
APA
Liao, Jiayan,Zhou, Jiajia,Song, Yiliao,Liu, Baolei,Lu, Jie,&Jin, Dayong.(2021).Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning.Journal of Physical Chemistry Letters,12(41),10242-10248.
MLA
Liao, Jiayan,et al."Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning".Journal of Physical Chemistry Letters 12.41(2021):10242-10248.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liao, Jiayan]的文章
[Zhou, Jiajia]的文章
[Song, Yiliao]的文章
百度学术
百度学术中相似的文章
[Liao, Jiayan]的文章
[Zhou, Jiajia]的文章
[Song, Yiliao]的文章
必应学术
必应学术中相似的文章
[Liao, Jiayan]的文章
[Zhou, Jiajia]的文章
[Song, Yiliao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。