题名 | Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning |
作者 | |
通讯作者 | Zhou, Jiajia |
发表日期 | 2021-10-21
|
DOI | |
发表期刊 | |
ISSN | 1948-7185
|
卷号 | 12期号:41页码:10242-10248 |
摘要 | Highly controlled synthesis of upconversion nanoparticles (UCNPs) can be achieved in the heterogeneous design, so that a library of optical properties can be arbitrarily produced by depositing multiple lanthanide ions. Such a control offers the potential in creating nanoscale barcodes carrying high-capacity information. With the increasing creation of optical information, it poses more challenges in decoding them in an accurate, high-throughput, and speedy fashion. Here, we reported that the deep-learning approach can recognize the complexity of the optical fingerprints from different UCNPs. Under a wide-field microscope, the lifetime profiles of hundreds of single nanoparticles can be collected at once, which offers a sufficient amount of data to develop deep-learning algorithms. We demonstrated that high accuracies of over 90% can be achieved in classifying 14 kinds of UCNPs. This work suggests new opportunities in handling the diverse properties of nanoscale optical barcodes toward the establishment of vast luminescent information carriers. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 其他
|
资助项目 | Australian Research Council Discovery Early Career Researcher Award Scheme[DE180100669]
; Australian Research Council Laureate Fellowship Program["FL210100180","FL190100149"]
; China Scholarship Council Scholarships[201508530231,201706020170]
; Australia-China Joint Research Centre for Point-of-Care Testing["ACSRF65827","2017YFE0132300"]
; Science and Technology Innovation Commission of Shenzhen[KQTD20170810110913065]
; National Natural Science Foundation of China[61729501]
; CAS/SAFEA International Partnership Program for Creative Research Teams and Major International (Regional) Joint Research Project of NSFC[51720105015]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:000711025300033
|
出版者 | |
EI入藏号 | 20214411096015
|
EI主题词 | Deep learning
; Learning algorithms
; Nanoparticles
; Optical properties
; Synthesis (chemical)
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Machine Learning:723.4.2
; Light/Optics:741.1
; Nanotechnology:761
; Chemical Reactions:802.2
; Solid State Physics:933
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254785 |
专题 | 工学院_生物医学工程系 |
作者单位 | 1.Univ Technol Sydney, Fac Sci, Inst Biomed Mat & Devices IBMD, Sydney, NSW 2007, Australia 2.Univ Technol Sydney, Australian Artificial Intelligence Inst, Sydney, NSW 2007, Australia 3.Southern Univ Sci & Technol, UTS SUStech Joint Res Ctr Biomed Mat & Devices, Dept Biomed Engn, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Liao, Jiayan,Zhou, Jiajia,Song, Yiliao,et al. Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning[J]. Journal of Physical Chemistry Letters,2021,12(41):10242-10248.
|
APA |
Liao, Jiayan,Zhou, Jiajia,Song, Yiliao,Liu, Baolei,Lu, Jie,&Jin, Dayong.(2021).Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning.Journal of Physical Chemistry Letters,12(41),10242-10248.
|
MLA |
Liao, Jiayan,et al."Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning".Journal of Physical Chemistry Letters 12.41(2021):10242-10248.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论