题名 | Enabling peristalsis of human colon tumor organoids on microfluidic chips |
作者 | |
通讯作者 | Lu, Hongxu; Jin, Dayong |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1758-5082
|
EISSN | 1758-5090
|
卷号 | 14期号:1 |
摘要 | Peristalsis in the digestive tract is crucial to maintain physiological functions. It remains challenging to mimic the peristaltic microenvironment in gastrointestinal organoid culture. Here, we present a method to model the peristalsis for human colon tumor organoids on a microfluidic chip. The chip contains hundreds of lateral microwells and a surrounding pressure channel. Human colon tumor organoids growing in the microwell were cyclically contracted by pressure channel, mimicking the in vivo mechano-stimulus by intestinal muscles. The chip allows the control of peristalsis amplitude and rhythm and the high throughput culture of organoids simultaneously. By applying 8% amplitude with 8 similar to 10 times min(-1), we observed the enhanced expression of Lgr5 and Ki67. Moreover, ellipticine-loaded polymeric micelles showed reduced uptake in the organoids under peristalsis and resulted in compromised anti-tumor efficacy. The results indicate the importance of mechanical stimuli mimicking the physiological environment when using in vitro models to evaluate nanoparticles. This work provides a method for attaining more reliable and representative organoids models in nanomedicine. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | China Scholarship Council[201708140082]
; National Health and Medical Research Council (NHMRC)[GNT1160635]
; ARC Industry Transformational Research Hub Scheme[IH150100028]
; ARC Linkage Infrastructure, Equipment and Facilities (LIEF) Project[LE180100043]
; Australian Government["ACSRF65827","2017YFE0132300"]
; Chinese Government["ACSRF65827","2017YFE0132300"]
|
WOS研究方向 | Engineering
; Materials Science
|
WOS类目 | Engineering, Biomedical
; Materials Science, Biomaterials
|
WOS记录号 | WOS:000710694400001
|
出版者 | |
EI入藏号 | 20214711185352
|
EI主题词 | Drug delivery
; Fluidic devices
; Medical nanotechnology
; Microfluidics
; Physiological models
; Physiology
; Tumors
|
EI分类号 | Biomedical Engineering:461.1
; Biological Materials and Tissue Engineering:461.2
; Biology:461.9
; Hydraulic Equipment and Machinery:632.2
; Microfluidics:632.5.1
; Control Equipment:732.1
; Nanotechnology:761
; Colloid Chemistry:801.3
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:47
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254803 |
专题 | 工学院_生物医学工程系 |
作者单位 | 1.Univ Technol Sydney, Sch Math & Phys Sci, Inst Biomed Mat & Devices, Broadway Ultimo, Sydney, NSW 2007, Australia 2.Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia 3.Univ Newcastle, Sch Environm & Life Sci, Callaghan, NSW 2308, Australia 4.Univ Sydney, Fac Engn, Sch Biomed Engn, Sydney, NSW 2008, Australia 5.Southern Univ Sci & Technol, UTS SUSTech Joint Res Ctr Biomed Mat & Devices, Dept Biomed Engn, Shenzhen, Peoples R China |
通讯作者单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Fang, Guocheng,Lu, Hongxu,Al-Nakashli, Russul,et al. Enabling peristalsis of human colon tumor organoids on microfluidic chips[J]. Biofabrication,2022,14(1).
|
APA |
Fang, Guocheng.,Lu, Hongxu.,Al-Nakashli, Russul.,Chapman, Robert.,Zhang, Yingqi.,...&Jin, Dayong.(2022).Enabling peristalsis of human colon tumor organoids on microfluidic chips.Biofabrication,14(1).
|
MLA |
Fang, Guocheng,et al."Enabling peristalsis of human colon tumor organoids on microfluidic chips".Biofabrication 14.1(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论