中文版 | English
题名

EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising

作者
通讯作者Liu,Quanying
发表日期
2021-10-14
DOI
发表期刊
ISSN
1741-2560
EISSN
1741-2552
卷号18期号:5
摘要

Objective.Deep learning (DL) networks are increasingly attracting attention across various fields, including electroencephalography (EEG) signal processing. These models provide comparable performance to that of traditional techniques. At present, however, there is a lack of well-structured and standardized datasets with specific benchmark limit the development of DL solutions for EEG denoising.Approach.Here, we present EEGdenoiseNet, a benchmark EEG dataset that is suited for training and testing DL-based denoising models, as well as for performance comparisons across models. EEGdenoiseNet contains 4514 clean EEG segments, 3400 ocular artifact segments and 5598 muscular artifact segments, allowing users to synthesize contaminated EEG segments with the ground-truth clean EEG.Main results.We used EEGdenoiseNet to evaluate denoising performance of four classical networks (a fully-connected network, a simple and a complex convolution network, and a recurrent neural network). Our results suggested that DL methods have great potential for EEG denoising even under high noise contamination.Significance.Through EEGdenoiseNet, we hope to accelerate the development of the emerging field of DL-based EEG denoising. The dataset and code are available athttps://github.com/ncclabsustech/EEGdenoiseNet.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62001205] ; Guangdong Natural Science Foundation Joint Fund[2019A1515111038] ; Shenzhen Science and Technology Innovation Committee[20200925155957004,"KCXFZ2020122117340001","SGDX2020110309280100"] ; Shenzhen Key Laboratory of Smart Healthcare Engineering[ZDSYS20200811144003009]
WOS研究方向
Engineering ; Neurosciences & Neurology
WOS类目
Engineering, Biomedical ; Neurosciences
WOS记录号
WOS:000739545000001
出版者
EI入藏号
20214511140702
EI主题词
Benchmarking ; Electroencephalography ; Recurrent neural networks ; Signal processing ; Statistical tests ; Well testing
EI分类号
Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Mathematical Statistics:922.2
来源库
Web of Science
引用统计
被引频次[WOS]:68
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254840
专题工学院_生物医学工程系
作者单位
1.Shenzhen Key Laboratory of Smart Healthcare Engineering,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Movement Control and Neuroplasticity Research Group,KU Leuven,Leuven,3001,Belgium
3.Brain Imaging and Neural Dynamics Research Group,IRCCS San Camillo Hospital,Venice,30126,Italy
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Zhang,Haoming,Zhao,Mingqi,Wei,Chen,et al. EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising[J]. Journal of Neural Engineering,2021,18(5).
APA
Zhang,Haoming,Zhao,Mingqi,Wei,Chen,Mantini,Dante,Li,Zherui,&Liu,Quanying.(2021).EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising.Journal of Neural Engineering,18(5).
MLA
Zhang,Haoming,et al."EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising".Journal of Neural Engineering 18.5(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Haoming]的文章
[Zhao,Mingqi]的文章
[Wei,Chen]的文章
百度学术
百度学术中相似的文章
[Zhang,Haoming]的文章
[Zhao,Mingqi]的文章
[Wei,Chen]的文章
必应学术
必应学术中相似的文章
[Zhang,Haoming]的文章
[Zhao,Mingqi]的文章
[Wei,Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。