题名 | EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising |
作者 | |
通讯作者 | Liu,Quanying |
发表日期 | 2021-10-14
|
DOI | |
发表期刊 | |
ISSN | 1741-2560
|
EISSN | 1741-2552
|
卷号 | 18期号:5 |
摘要 | Objective.Deep learning (DL) networks are increasingly attracting attention across various fields, including electroencephalography (EEG) signal processing. These models provide comparable performance to that of traditional techniques. At present, however, there is a lack of well-structured and standardized datasets with specific benchmark limit the development of DL solutions for EEG denoising.Approach.Here, we present EEGdenoiseNet, a benchmark EEG dataset that is suited for training and testing DL-based denoising models, as well as for performance comparisons across models. EEGdenoiseNet contains 4514 clean EEG segments, 3400 ocular artifact segments and 5598 muscular artifact segments, allowing users to synthesize contaminated EEG segments with the ground-truth clean EEG.Main results.We used EEGdenoiseNet to evaluate denoising performance of four classical networks (a fully-connected network, a simple and a complex convolution network, and a recurrent neural network). Our results suggested that DL methods have great potential for EEG denoising even under high noise contamination.Significance.Through EEGdenoiseNet, we hope to accelerate the development of the emerging field of DL-based EEG denoising. The dataset and code are available athttps://github.com/ncclabsustech/EEGdenoiseNet. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[62001205]
; Guangdong Natural Science Foundation Joint Fund[2019A1515111038]
; Shenzhen Science and Technology Innovation Committee[20200925155957004,"KCXFZ2020122117340001","SGDX2020110309280100"]
; Shenzhen Key Laboratory of Smart Healthcare Engineering[ZDSYS20200811144003009]
|
WOS研究方向 | Engineering
; Neurosciences & Neurology
|
WOS类目 | Engineering, Biomedical
; Neurosciences
|
WOS记录号 | WOS:000739545000001
|
出版者 | |
EI入藏号 | 20214511140702
|
EI主题词 | Benchmarking
; Electroencephalography
; Recurrent neural networks
; Signal processing
; Statistical tests
; Well testing
|
EI分类号 | Biomedical Engineering:461.1
; Medicine and Pharmacology:461.6
; Information Theory and Signal Processing:716.1
; Mathematical Statistics:922.2
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:68
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254840 |
专题 | 工学院_生物医学工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Smart Healthcare Engineering,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Movement Control and Neuroplasticity Research Group,KU Leuven,Leuven,3001,Belgium 3.Brain Imaging and Neural Dynamics Research Group,IRCCS San Camillo Hospital,Venice,30126,Italy |
第一作者单位 | 生物医学工程系 |
通讯作者单位 | 生物医学工程系 |
第一作者的第一单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Haoming,Zhao,Mingqi,Wei,Chen,et al. EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising[J]. Journal of Neural Engineering,2021,18(5).
|
APA |
Zhang,Haoming,Zhao,Mingqi,Wei,Chen,Mantini,Dante,Li,Zherui,&Liu,Quanying.(2021).EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising.Journal of Neural Engineering,18(5).
|
MLA |
Zhang,Haoming,et al."EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising".Journal of Neural Engineering 18.5(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论