中文版 | English
题名

Artificial neural network model for large-eddy simulation of compressible turbulence 基于人工神经网络的可压缩湍流大涡模拟模型

作者
通讯作者Wang,Jianchun
发表日期
2021-09-25
DOI
发表期刊
ISSN
1000-6893
卷号42期号:9
摘要
The Spatial Artificial Neural Network (SANN) model is applied to perform Large Eddy Simulations (LES) of highly compressible turbulence at high turbulent Mach numbers of 0.6, 0.8 and 1.0 under the National Numerical Windtunnel (NNW) Project. In our previous studies, we developed the SANN model for incompressible and weakly compressible turbulence based on multi-scale spatial structures of turbulence. However, generations of shock waves in highly compressible turbulence pose great challenges to LES. This paper discusses the applicability of the SANN models for LES of highly compressible turbulence. It has been demonstrated that the correlation coefficients of the SANN model can be larger than 0.995. The relative errors of the SANN model can be smaller than 11%, which are much smaller than those of the traditional gradient model and the approximate deconvolution model in an a priori analysis for highly compressible turbulence. In an a posteriori analysis, we make a comparison of the results of the SANN model, the Implicit Large Eddy Simulation (ILES), the Dynamic Smagorinsky Model (DSM) and the Dynamic Mixed Model (DMM). It is shown that the SANN model performs better in the prediction of spectra and statistical properties of velocity and temperature, and instantaneous flow structures for highly compressible turbulence. The artificial neural network model with consideration of spatial features can deepen our understanding of subgrid-scale modeling for LES of highly compressible turbulence. At the same time, the model can contribute to the construction of the turbulence models of the NNW Project.
关键词
相关链接[Scopus记录]
收录类别
语种
中文
学校署名
第一 ; 通讯
EI入藏号
20214411107903
EI主题词
Incompressible flow ; Mach number ; Neural networks ; Shock waves ; Turbulence models
EI分类号
Fluid Flow:631 ; Mathematics:921 ; Classical Physics; Quantum Theory; Relativity:931 ; Mechanical Variables Measurements:943.2
Scopus记录号
2-s2.0-85118298344
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254853
专题工学院_力学与航空航天工程系
工学院
作者单位
1.Department of Mechanics and Aerospace Engineering,College of Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位力学与航空航天工程系;  工学院;  南方科技大学
通讯作者单位力学与航空航天工程系;  工学院;  南方科技大学
第一作者的第一单位力学与航空航天工程系;  工学院
推荐引用方式
GB/T 7714
Xie,Chenyue,Wang,Jianchun,Wan,Minping,等. Artificial neural network model for large-eddy simulation of compressible turbulence 基于人工神经网络的可压缩湍流大涡模拟模型[J]. 航空学报,2021,42(9).
APA
Xie,Chenyue,Wang,Jianchun,Wan,Minping,&Chen,Shiyi.(2021).Artificial neural network model for large-eddy simulation of compressible turbulence 基于人工神经网络的可压缩湍流大涡模拟模型.航空学报,42(9).
MLA
Xie,Chenyue,et al."Artificial neural network model for large-eddy simulation of compressible turbulence 基于人工神经网络的可压缩湍流大涡模拟模型".航空学报 42.9(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
[Wan,Minping]的文章
百度学术
百度学术中相似的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
[Wan,Minping]的文章
必应学术
必应学术中相似的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
[Wan,Minping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。