中文版 | English
题名

Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding

作者
通讯作者Zhang,Mingjie; Chan,Hue Sun
发表日期
2021
DOI
发表期刊
ISSN
0006-3495
EISSN
1542-0086
卷号121期号:1
摘要
The assembly of functional biomolecular condensates often involves liquid-liquid phase separation (LLPS) of proteins with multiple modular domains, which can be folded or conformationally disordered to various degrees. To understand the LLPS-driving domain-domain interactions, a fundamental question is how readily the interactions in the condensed phase can be inferred from interdomain interactions in dilute solutions. In particular, are the interactions leading to LLPS exclusively those underlying the formation of discrete interdomain complexes in homogeneous solutions? We address this question by developing a mean-field LLPS theory of two stoichiometrically constrained solute species. The theory is applied to the neuronal proteins SynGAP and PSD-95, whose complex coacervate serves as a rudimentary model for neuronal postsynaptic densities (PSDs). The predicted phase behaviors are compared with experiments. Previously, a three SynGAP/two PSD-95 ratio was determined for SynGAP/PSD-95 complexes in dilute solutions. However, when this 3:2 stoichiometry is uniformly imposed in our theory encompassing both dilute and condensed phases, the tie-line pattern of the predicted SynGAP/PSD-95 phase diagram differs drastically from that obtained experimentally. In contrast, theories embodying alternate scenarios postulating auxiliary SynGAP-PSD-95 as well as SynGAP-SynGAP and PSD-95-PSD-95 interactions, in addition to those responsible for stoichiometric SynGAP/PSD-95 complexes, produce tie-line patterns consistent with experiment. Hence, our combined theoretical-experimental analysis indicates that weaker interactions or higher-order complexes beyond the 3:2 stoichiometry, but not yet documented, are involved in the formation of SynGAP/PSD-95 condensates, imploring future efforts to ascertain the nature of these auxiliary interactions in PSD-like LLPS and underscoring a likely general synergy between stoichiometric, structurally specific binding and stochastic, multivalent “fuzzy” interactions in the assembly of functional biomolecular condensates.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Canadian Institutes of Health Research[NJT-155930] ; Natural Sciences and Engineering Research Council of Canada[RGPIN-2018-04351] ; National Key R&D Program of China[2019YFA0508402] ; Research Grants Council of Hong Kong[AoE-M09-12]
WOS研究方向
Biophysics
WOS类目
Biophysics
WOS记录号
WOS:000740815400016
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
Scopus记录号
2-s2.0-85118253392
来源库
Scopus
引用统计
被引频次[WOS]:17
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254865
专题生命科学学院
作者单位
1.Department of Biochemistry,University of Toronto,Ontario,Toronto,Canada
2.Molecular Medicine,The Hospital for Sick Children,Ontario,Toronto,Canada
3.Division of Life Science,State Key Laboratory of Molecular Neuroscience,Hong Kong University of Science and Technology,Clear Water Bay,Hong Kong,Hong Kong
4.School of Life Sciences,Southern University of Science and Technology,Shenzhen,China
通讯作者单位生命科学学院
推荐引用方式
GB/T 7714
Lin,Yi Hsuan,Wu,Haowei,Jia,Bowen,et al. Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding[J]. BIOPHYSICAL JOURNAL,2021,121(1).
APA
Lin,Yi Hsuan,Wu,Haowei,Jia,Bowen,Zhang,Mingjie,&Chan,Hue Sun.(2021).Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding.BIOPHYSICAL JOURNAL,121(1).
MLA
Lin,Yi Hsuan,et al."Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding".BIOPHYSICAL JOURNAL 121.1(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Yi Hsuan]的文章
[Wu,Haowei]的文章
[Jia,Bowen]的文章
百度学术
百度学术中相似的文章
[Lin,Yi Hsuan]的文章
[Wu,Haowei]的文章
[Jia,Bowen]的文章
必应学术
必应学术中相似的文章
[Lin,Yi Hsuan]的文章
[Wu,Haowei]的文章
[Jia,Bowen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。