题名 | Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling |
作者 | |
通讯作者 | Xiang,Guolei |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 1998-0124
|
EISSN | 1998-0000
|
卷号 | 15页码:3812-3817 |
摘要 | Size reduction can generally enhance the surface reactivity of inorganic nanomaterials. The origin of this nano-effect has been ascribed to ultrasmall size, large specific surface area, or abundant defects, but the most intrinsic electronic-level principles are still not fully understood yet. By combining experimental explorations and mathematical modeling, herein we propose an electronic-level model to reveal the physicochemical nature of size-dependent nanomaterial surface reactivity. Experimentally, we reveal that competitive redistribution of surface atomic orbitals from extended energy band states into localized surface chemical bonds is the critical electronic process of surface chemical interactions, using HO-TiO chemisorption as a model reaction. Theoretically, we define a concept, orbital potential (G), to describe the electronic feature determining the tendency of orbital redistribution, and deduce a mathematical model to reveal how size modulates surface reactivity. We expose the dual roles of size reduction in enhancing nanomaterial surface reactivity—inversely correlating to orbital potential and amplifying the effects of other structural factors on surface reactivity. [Figure not available: see fulltext.] |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[21801012]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
|
WOS记录号 | WOS:000712941900005
|
出版者 | |
EI入藏号 | 20214411106558
|
EI主题词 | Bond strength (chemical)
; Nanostructured materials
; Quantum chemistry
; Reduction
; Size determination
; Titanium dioxide
|
EI分类号 | Nanotechnology:761
; Physical Chemistry:801.4
; Chemical Reactions:802.2
; Chemical Operations:802.3
; Inorganic Compounds:804.2
; Crystalline Solids:933.1
|
Scopus记录号 | 2-s2.0-85118240755
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:23
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254867 |
专题 | 理学院_化学系 |
作者单位 | 1.State Key Laboratory of Chemical Resource Engineering,College of Chemistry,Beijing University of Chemical Technology,Beijing,100029,China 2.Department of Chemistry,Southern University of Science and Technology,Shenzhen,518000,China |
推荐引用方式 GB/T 7714 |
Xiang,Guolei,Wang,Yang Gang. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling[J]. Nano Research,2021,15:3812-3817.
|
APA |
Xiang,Guolei,&Wang,Yang Gang.(2021).Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling.Nano Research,15,3812-3817.
|
MLA |
Xiang,Guolei,et al."Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling".Nano Research 15(2021):3812-3817.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论