中文版 | English
题名

A nested parallel multiscale convolution for cerebrovascular segmentation

作者
通讯作者Xia,Likun; Zhao,Yitian
发表日期
2021
DOI
发表期刊
ISSN
0094-2405
EISSN
2473-4209
卷号48页码:7971-7983
摘要

Purpose: Cerebrovascular segmentation in magnetic resonance imaging (MRI) plays an important role in the diagnosis and treatment of cerebrovascular diseases. Many segmentation frameworks based on convolutional neural networks (CNNs) or U-Net-like structures have been proposed for cerebrovascular segmentation. Unfortunately, the segmentation results are still unsatisfactory, particularly in the small/thin cerebrovascular due to the following reasons: (1) the lack of attention to multiscale features in encoder caused by the convolutions with single kernel size; (2) insufficient extraction of shallow and deep-seated features caused by the depth limitation of transmission path between encoder and decoder; (3) insufficient utilization of the extracted features in decoder caused by less attention to multiscale features. Methods: Inspired by U-Net++, we propose a novel 3D U-Net-like framework termed Usception for small cerebrovascular. It includes three blocks: Reduction block, Gap block, and Deep block, aiming to: (1) improve feature extraction ability by grouping different convolution sizes; (2) increase the number of multiscale features in different layers by grouping paths of different depths between encoder and decoder; (3) maximize the ability of decoder in recovering multiscale features from Reduction and Gap block by using convolutions with different kernel sizes. Results: The proposed framework is evaluated on three public and in-house clinical magnetic resonance angiography (MRA) data sets. The experimental results show that our framework reaches an average dice score of 69.29%, 87.40%, 77.77% on three data sets, which outperform existing state-of-the-art methods. We also validate the effectiveness of each block through ablation experiments. Conclusions: By means of the combination of Inception-ResNet and dimension-expanded U-Net++, the proposed framework has demonstrated its capability to maximize multiscale feature extraction, thus achieving competitive segmentation results for small cerebrovascular.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Beijing Natural Science Foundation[4202011] ; National Natural Science Foundation of China[61572076,61772351] ; Zhejiang Provincial Natural Science Foundation[LZ19F010001] ; Youth Innovation Promotion Association CAS[2021298] ; Key Research Grant of Academy for Multidisciplinary Studies of CNU[JCKXYJY2019018]
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000712982500001
出版者
EI入藏号
20214411106666
EI主题词
Convolutional neural networks ; Decoding ; Diagnosis ; Extraction ; Feature extraction ; Image segmentation ; Magnetic resonance imaging ; Signal encoding
EI分类号
Medicine and Pharmacology:461.6 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Imaging Techniques:746 ; Chemical Operations:802.3
ESI学科分类
CLINICAL MEDICINE
Scopus记录号
2-s2.0-85118232493
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254869
专题工学院_计算机科学与工程系
作者单位
1.College of Information Engineering,Capital Normal University,Beijing,China
2.International Science and Technology Cooperation Base of Electronic System Reliability and Mathematical Interdisciplinary,Capital Normal University,Beijing,China
3.Laboratory of Neural Computing and Intelligent Perception,Capital Normal University,Beijing,China
4.Beijing Advanced Innovation Center for Imaging Theory and Technology,Capital Normal University,Beijing,China
5.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
6.Department of Neurosurgery,Ningbo First Hospital,Ningbo,China
7.School of Control Science and Engineering,Shandong University,Jinan,China
8.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Xia,Likun,Xie,Yixuan,Wang,Qiwang,et al. A nested parallel multiscale convolution for cerebrovascular segmentation[J]. MEDICAL PHYSICS,2021,48:7971-7983.
APA
Xia,Likun.,Xie,Yixuan.,Wang,Qiwang.,Zhang,Hao.,He,Cheng.,...&Zhao,Yitian.(2021).A nested parallel multiscale convolution for cerebrovascular segmentation.MEDICAL PHYSICS,48,7971-7983.
MLA
Xia,Likun,et al."A nested parallel multiscale convolution for cerebrovascular segmentation".MEDICAL PHYSICS 48(2021):7971-7983.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A nested parallel mu(6069KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xia,Likun]的文章
[Xie,Yixuan]的文章
[Wang,Qiwang]的文章
百度学术
百度学术中相似的文章
[Xia,Likun]的文章
[Xie,Yixuan]的文章
[Wang,Qiwang]的文章
必应学术
必应学术中相似的文章
[Xia,Likun]的文章
[Xie,Yixuan]的文章
[Wang,Qiwang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。