中文版 | English
题名

Continual Representation Learning via Auto-Weighted Latent Embeddings on Person ReID

作者
通讯作者Zhang,Jianguo
DOI
发表日期
2021
会议名称
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(PRCV2021))
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-030-88009-5
会议录名称
卷号
13021 LNCS
页码
593-605
会议日期
2021.12
会议地点
中国珠海
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

Popular deep neural network models in artificial intelligence systems are found having catastrophic forgetting problem: when learning on a sequence of tasks, deep networks tend to only achieve high performance on the current task, while losing performance on previously learned tasks. This issue is often addressed by continual learning or lifelong learning. The majority of existing continual learning approaches adopt class incremental strategy, which will continuously expand the network structure. Representation learning, which only leverages the feature vector before classification layer, is able to maintain the model capacity in continual learning. However, recent continual representation learning methods are not well evaluated on unseen classes. In this paper, we pay attention to the performance of continual representation learning on unseen classes, and propose a novel auto-weighted latent embeddings method. For each task, autoencoders are developed to reconstruct feature maps from different levels in the neural network. The embeddings generated by these autoencoders on the manifolds are constrained when learning a new task so as to preserve the knowledge in previous tasks. An adapted auto-weighted approach is developed in this paper to assign different levels of importance to the embeddings based on reconstruction errors. Our experiments on three widely used Person Re-identification datasets expose the existence of catastrophic forgetting problem for representation learning on unseen classes, and demonstrate that our proposed method outperforms other related methods in continual representation learning setup.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Imaging Science & Photographic Technology
WOS记录号
WOS:000846861800050
EI入藏号
20214411100658
EI主题词
Deep neural networks
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85118209473
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254870
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Huang,Tianjun,Qu,Weiwei,Zhang,Jianguo. Continual Representation Learning via Auto-Weighted Latent Embeddings on Person ReID[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:593-605.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Tianjun]的文章
[Qu,Weiwei]的文章
[Zhang,Jianguo]的文章
百度学术
百度学术中相似的文章
[Huang,Tianjun]的文章
[Qu,Weiwei]的文章
[Zhang,Jianguo]的文章
必应学术
必应学术中相似的文章
[Huang,Tianjun]的文章
[Qu,Weiwei]的文章
[Zhang,Jianguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。