题名 | Continual Representation Learning via Auto-Weighted Latent Embeddings on Person ReID |
作者 | |
通讯作者 | Zhang,Jianguo |
DOI | |
发表日期 | 2021
|
会议名称 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(PRCV2021))
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-030-88009-5
|
会议录名称 | |
卷号 | 13021 LNCS
|
页码 | 593-605
|
会议日期 | 2021.12
|
会议地点 | 中国珠海
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Popular deep neural network models in artificial intelligence systems are found having catastrophic forgetting problem: when learning on a sequence of tasks, deep networks tend to only achieve high performance on the current task, while losing performance on previously learned tasks. This issue is often addressed by continual learning or lifelong learning. The majority of existing continual learning approaches adopt class incremental strategy, which will continuously expand the network structure. Representation learning, which only leverages the feature vector before classification layer, is able to maintain the model capacity in continual learning. However, recent continual representation learning methods are not well evaluated on unseen classes. In this paper, we pay attention to the performance of continual representation learning on unseen classes, and propose a novel auto-weighted latent embeddings method. For each task, autoencoders are developed to reconstruct feature maps from different levels in the neural network. The embeddings generated by these autoencoders on the manifolds are constrained when learning a new task so as to preserve the knowledge in previous tasks. An adapted auto-weighted approach is developed in this paper to assign different levels of importance to the embeddings based on reconstruction errors. Our experiments on three widely used Person Re-identification datasets expose the existence of catastrophic forgetting problem for representation learning on unseen classes, and demonstrate that our proposed method outperforms other related methods in continual representation learning setup. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Software Engineering
; Computer Science, Theory & Methods
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000846861800050
|
EI入藏号 | 20214411100658
|
EI主题词 | Deep neural networks
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85118209473
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254870 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Huang,Tianjun,Qu,Weiwei,Zhang,Jianguo. Continual Representation Learning via Auto-Weighted Latent Embeddings on Person ReID[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:593-605.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论