中文版 | English
题名

Machine Learning for Predicting Motor Improvement After Acute Subcortical Infarction Using Baseline Whole Brain Volumes

作者
通讯作者Zeng, Jinsheng; Tang, Xiaoying
发表日期
2021-11-01
DOI
发表期刊
ISSN
1545-9683
EISSN
1552-6844
摘要
Background. Neuroimaging biomarkers are valuable predictors of motor improvement after stroke, but there is a gap between published evidence and clinical usage. Objective. In this work, we aimed to investigate whether machine learning techniques, when applied to a combination of baseline whole brain volumes and clinical data, can accurately predict individual motor outcome after stroke. Methods. Upper extremity Fugl-Meyer Assessments (FMA-UE) were conducted 1 week and 12 weeks, and structural MRI was performed 1 week, after onset in 56 patients with subcortical infarction. Proportional recovery model residuals were employed to assign patients to proportional and poor recovery groups (34 vs 22). A sophisticated machine learning scheme, consisting of conditional infomax feature extraction, synthetic minority over-sampling technique for nominal and continuous, and bagging classification, was employed to predict motor outcomes, with the input features being a combination of baseline whole brain volumes and clinical data (FMA-UE scores). Results. The proposed machine learning scheme yielded an overall balanced accuracy of 87.71% in predicting proportional vs poor recovery outcomes, a sensitivity of 93.77% in correctly identifying poor recovery outcomes, and a ROC AUC of 89.74%. Compared with only using clinical data, adding whole brain volumes can significantly improve the classification performance, especially in terms of the overall balanced accuracy (from 80.88% to 87.71%) and the sensitivity (from 92.23% to 93.77%). Conclusions. Experimental results suggest that a combination of baseline whole brain volumes and clinical data, when equipped with appropriate machine learning techniques, may provide valuable information for personalized rehabilitation planning after subcortical infarction.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Key R&D Program of China["2017YFC1307500","2017YFC0112404"] ; National Natural Science Foundation of China[62071210,81600998,81601522,81501546,81771137,81971103] ; Shenzhen Basic Research Program[JCYJ20190809120205578] ; High-level University Fund[G02236002] ; Key-Area Research and Development Program of Guangdong Province[2018B030340001] ; Natural Science Foundation of Guangdong Province["2016A030310132","2021A1515010600"] ; Sun Yat-sen University Clinical Research 5010 Program[2018001] ; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases[2020B1212060017] ; Southern China International Cooperation Base for Early Intervention and Functional Rehabilitation of Neurological Diseases["2015B050501003","2020A0505020004"]
WOS研究方向
Neurosciences & Neurology ; Rehabilitation
WOS类目
Clinical Neurology ; Rehabilitation
WOS记录号
WOS:000715261800001
出版者
ESI学科分类
NEUROSCIENCE & BEHAVIOR
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/255329
专题工学院_电子与电气工程系
作者单位
1.Sun Yat Sen Univ, Affiliated Hosp 1, Dept Neurol,Natl Key Clin Dept & Key Discipline N, Guangdong Prov Key Lab Diag & Treatment Major Neu, Guangzhou, Peoples R China
2.Guangdong HongKong Macao Greater Bay Area Ctr Bra, Guangzhou, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
4.Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou, Peoples R China
5.Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Dept Med Imaging, State Key Lab Oncol Southern China,Canc Ctr, Guangzhou, Peoples R China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Liu, Gang,Wu, Jiewei,Dang, Chao,et al. Machine Learning for Predicting Motor Improvement After Acute Subcortical Infarction Using Baseline Whole Brain Volumes[J]. NEUROREHABILITATION AND NEURAL REPAIR,2021.
APA
Liu, Gang.,Wu, Jiewei.,Dang, Chao.,Tan, Shuangquan.,Peng, Kangqiang.,...&Tang, Xiaoying.(2021).Machine Learning for Predicting Motor Improvement After Acute Subcortical Infarction Using Baseline Whole Brain Volumes.NEUROREHABILITATION AND NEURAL REPAIR.
MLA
Liu, Gang,et al."Machine Learning for Predicting Motor Improvement After Acute Subcortical Infarction Using Baseline Whole Brain Volumes".NEUROREHABILITATION AND NEURAL REPAIR (2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Gang]的文章
[Wu, Jiewei]的文章
[Dang, Chao]的文章
百度学术
百度学术中相似的文章
[Liu, Gang]的文章
[Wu, Jiewei]的文章
[Dang, Chao]的文章
必应学术
必应学术中相似的文章
[Liu, Gang]的文章
[Wu, Jiewei]的文章
[Dang, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。