题名 | Decoupled self-supervised label augmentation for fully-supervised image classification |
作者 | |
通讯作者 | Xia,Qihui |
发表日期 | 2022-01-10
|
DOI | |
发表期刊 | |
ISSN | 0950-7051
|
卷号 | 235 |
摘要 | Self-supervised label augmentation has emerged as an effective means to overcome the data scarcity problem for supervised vision tasks. Existing rotation-based self-supervised label augmentation methods either impose or relax the rotation invariance constraint on the primary classifier, which omit necessary supervisory information and may degrade the classification performance depending on the given working data. To overcome this problem, we propose a decoupled self-supervised label augmentation method to enhance the feature representation for fully-supervised image classification. Experimental results on diverse datasets demonstrate that the proposed method consistently outperforms state-of-the-art data augmentation methods. The proposed method is also complementary to conventional data augmentation methods, such as AutoAugment and Fast AutoAugment. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS记录号 | WOS:000718126500016
|
EI入藏号 | 20214511131965
|
EI主题词 | Classification (of information)
; Image enhancement
|
EI分类号 | Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Information Sources and Analysis:903.1
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85118552022
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/255360 |
专题 | 南方科技大学 |
作者单位 | 1.School of Electrical and Information Engineering,Xi'an Jiaotong University,Xi'an,No. 28, Xianning West Road,710049,China 2.School of Computer Science and Engineering,Nanyang Technological University,50 Nanyang Avenue,639798,Singapore 3.Southern University of Science and Technology,Shenzhen,1088 Xueyuan Avenue, Nanshan District,518055,China 4.Institute of Guangdong Xi'an Jiaotong University,Foshan,No. 3, Shuxiang East Road,528399,China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Gao,Wanshun,Wu,Meiqing,Lam,Siew Kei,et al. Decoupled self-supervised label augmentation for fully-supervised image classification[J]. KNOWLEDGE-BASED SYSTEMS,2022,235.
|
APA |
Gao,Wanshun,Wu,Meiqing,Lam,Siew Kei,Xia,Qihui,&Zou,Jianhua.(2022).Decoupled self-supervised label augmentation for fully-supervised image classification.KNOWLEDGE-BASED SYSTEMS,235.
|
MLA |
Gao,Wanshun,et al."Decoupled self-supervised label augmentation for fully-supervised image classification".KNOWLEDGE-BASED SYSTEMS 235(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论