中文版 | English
题名

Decoupled self-supervised label augmentation for fully-supervised image classification

作者
通讯作者Xia,Qihui
发表日期
2022-01-10
DOI
发表期刊
ISSN
0950-7051
卷号235
摘要
Self-supervised label augmentation has emerged as an effective means to overcome the data scarcity problem for supervised vision tasks. Existing rotation-based self-supervised label augmentation methods either impose or relax the rotation invariance constraint on the primary classifier, which omit necessary supervisory information and may degrade the classification performance depending on the given working data. To overcome this problem, we propose a decoupled self-supervised label augmentation method to enhance the feature representation for fully-supervised image classification. Experimental results on diverse datasets demonstrate that the proposed method consistently outperforms state-of-the-art data augmentation methods. The proposed method is also complementary to conventional data augmentation methods, such as AutoAugment and Fast AutoAugment.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS记录号
WOS:000718126500016
EI入藏号
20214511131965
EI主题词
Classification (of information) ; Image enhancement
EI分类号
Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85118552022
来源库
Scopus
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/255360
专题南方科技大学
作者单位
1.School of Electrical and Information Engineering,Xi'an Jiaotong University,Xi'an,No. 28, Xianning West Road,710049,China
2.School of Computer Science and Engineering,Nanyang Technological University,50 Nanyang Avenue,639798,Singapore
3.Southern University of Science and Technology,Shenzhen,1088 Xueyuan Avenue, Nanshan District,518055,China
4.Institute of Guangdong Xi'an Jiaotong University,Foshan,No. 3, Shuxiang East Road,528399,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Gao,Wanshun,Wu,Meiqing,Lam,Siew Kei,et al. Decoupled self-supervised label augmentation for fully-supervised image classification[J]. KNOWLEDGE-BASED SYSTEMS,2022,235.
APA
Gao,Wanshun,Wu,Meiqing,Lam,Siew Kei,Xia,Qihui,&Zou,Jianhua.(2022).Decoupled self-supervised label augmentation for fully-supervised image classification.KNOWLEDGE-BASED SYSTEMS,235.
MLA
Gao,Wanshun,et al."Decoupled self-supervised label augmentation for fully-supervised image classification".KNOWLEDGE-BASED SYSTEMS 235(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gao,Wanshun]的文章
[Wu,Meiqing]的文章
[Lam,Siew Kei]的文章
百度学术
百度学术中相似的文章
[Gao,Wanshun]的文章
[Wu,Meiqing]的文章
[Lam,Siew Kei]的文章
必应学术
必应学术中相似的文章
[Gao,Wanshun]的文章
[Wu,Meiqing]的文章
[Lam,Siew Kei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。