题名 | A Penalty-Based Differential Evolution for Multimodal Optimization |
作者 | |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 2168-2267
|
EISSN | 2168-2275
|
卷号 | PP期号:99页码:1-10 |
摘要 | It is very difficult to locate multiple global optimal solutions (GOSs) of multimodal optimization problems (MMOPs). To deal with this issue, a penalty-based multimodal optimization differential evolution (DE), called PMODE, is developed in this article. In PMODE, a penalty strategy with a dynamic penalty radius is constructed to solve MMOPs. An elite selection mechanism is designed to identify and select elite solutions. The neighboring areas of these elite solutions are penalized. PMODE uses a popular DE variant--JADE as its search engine. The proposed PMODE is compared with several other state-of-the-art multimodal optimization algorithms on 20 MMOPs used in the IEEE CEC2013 special session. The experimental results show that PMODE performs better than other state-of-the-art methods. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
EI入藏号 | 20214511130590
|
EI主题词 | Clustering algorithms
; Evolutionary algorithms
; Linear programming
; Search engines
; Silicate minerals
|
EI分类号 | Minerals:482.2
; Computer Software, Data Handling and Applications:723
; Computer Programming:723.1
; Information Sources and Analysis:903.1
|
Scopus记录号 | 2-s2.0-85118580831
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9585559 |
引用统计 |
被引频次[WOS]:26
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/255467 |
专题 | 工学院_系统设计与智能制造学院 工学院_计算机科学与工程系 |
作者单位 | 1.School of Mathematics and Statistics, Xidian University, Xi'an 710126, China. 2.School of Mathematics and Statistics, Xidian University, Xi'an 710126, China (e-mail: gaoweifeng2004@126.com). 3.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China, and also with the Department of Computer Science, City University of Hong Kong, Hong Kong. 4.Department of Computer Science, City University of Hong Kong, Hong Kong, and also with City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518060, China. |
推荐引用方式 GB/T 7714 |
Wei,Zhifang,Gao,Weifeng,Li,Genghui,et al. A Penalty-Based Differential Evolution for Multimodal Optimization[J]. IEEE Transactions on Cybernetics,2021,PP(99):1-10.
|
APA |
Wei,Zhifang,Gao,Weifeng,Li,Genghui,&Zhang,Qingfu.(2021).A Penalty-Based Differential Evolution for Multimodal Optimization.IEEE Transactions on Cybernetics,PP(99),1-10.
|
MLA |
Wei,Zhifang,et al."A Penalty-Based Differential Evolution for Multimodal Optimization".IEEE Transactions on Cybernetics PP.99(2021):1-10.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
A_Penalty-Based_Diff(1328KB) | -- | -- | 限制开放 | -- | ||
A_Penalty-Based_Diff(1332KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论