中文版 | English
题名

A Penalty-Based Differential Evolution for Multimodal Optimization

作者
发表日期
2021
DOI
发表期刊
ISSN
2168-2267
EISSN
2168-2275
卷号PP期号:99页码:1-10
摘要

It is very difficult to locate multiple global optimal solutions (GOSs) of multimodal optimization problems (MMOPs). To deal with this issue, a penalty-based multimodal optimization differential evolution (DE), called PMODE, is developed in this article. In PMODE, a penalty strategy with a dynamic penalty radius is constructed to solve MMOPs. An elite selection mechanism is designed to identify and select elite solutions. The neighboring areas of these elite solutions are penalized. PMODE uses a popular DE variant--JADE as its search engine. The proposed PMODE is compared with several other state-of-the-art multimodal optimization algorithms on 20 MMOPs used in the IEEE CEC2013 special session. The experimental results show that PMODE performs better than other state-of-the-art methods.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20214511130590
EI主题词
Clustering algorithms ; Evolutionary algorithms ; Linear programming ; Search engines ; Silicate minerals
EI分类号
Minerals:482.2 ; Computer Software, Data Handling and Applications:723 ; Computer Programming:723.1 ; Information Sources and Analysis:903.1
Scopus记录号
2-s2.0-85118580831
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9585559
引用统计
被引频次[WOS]:26
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/255467
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of Mathematics and Statistics, Xidian University, Xi'an 710126, China.
2.School of Mathematics and Statistics, Xidian University, Xi'an 710126, China (e-mail: gaoweifeng2004@126.com).
3.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China, and also with the Department of Computer Science, City University of Hong Kong, Hong Kong.
4.Department of Computer Science, City University of Hong Kong, Hong Kong, and also with City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518060, China.
推荐引用方式
GB/T 7714
Wei,Zhifang,Gao,Weifeng,Li,Genghui,et al. A Penalty-Based Differential Evolution for Multimodal Optimization[J]. IEEE Transactions on Cybernetics,2021,PP(99):1-10.
APA
Wei,Zhifang,Gao,Weifeng,Li,Genghui,&Zhang,Qingfu.(2021).A Penalty-Based Differential Evolution for Multimodal Optimization.IEEE Transactions on Cybernetics,PP(99),1-10.
MLA
Wei,Zhifang,et al."A Penalty-Based Differential Evolution for Multimodal Optimization".IEEE Transactions on Cybernetics PP.99(2021):1-10.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A_Penalty-Based_Diff(1328KB)----限制开放--
A_Penalty-Based_Diff(1332KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wei,Zhifang]的文章
[Gao,Weifeng]的文章
[Li,Genghui]的文章
百度学术
百度学术中相似的文章
[Wei,Zhifang]的文章
[Gao,Weifeng]的文章
[Li,Genghui]的文章
必应学术
必应学术中相似的文章
[Wei,Zhifang]的文章
[Gao,Weifeng]的文章
[Li,Genghui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。