中文版 | English
题名

Feature selection based on brain storm optimization for data classification

作者
通讯作者Pourpanah, Farhad
发表日期
2019-07
DOI
发表期刊
ISSN
1568-4946
EISSN
1872-9681
卷号80页码:761-775
摘要
Brain storm optimization (BSO) is a new and effective swarm intelligence method inspired by the human brainstorming process. This paper presents a novel BSO-based feature selection technique for data classification. Specifically, the Fuzzy ARTMAP (FAM) model, which is employed as an incremental learning neural network, is combined with BSO, which acts as a feature selection method, to produce the hybrid FAM-BSO model for feature selection and optimization. Firstly, FAM is used to create a number of prototype nodes incrementally. Then, BSO is used to search and select an optimal sub-set of features that is able to produce high accuracy with the minimum number of features. Ten benchmark problems and a real-world case study are employed to evaluate the performance of FAM-BSO. The results are quantified statistically using the bootstrap method with the 95% confidence intervals. The outcome indicates that FAM-BSO is able to produce promising results as compared with those from original FAM and other feature selection methods including particle swarm optimization, genetic algorithm, genetic programming, and ant colony optimization. (C) 2019 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of Shenzhen University[827-000140] ; Natural Science Foundation of Shenzhen University[827-000230] ; Natural Science Foundation of Shenzhen University[2017060]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000470661600056
出版者
EI入藏号
20192006923594
EI主题词
Ant colony optimization ; Artificial intelligence ; Benchmarking ; Classification (of information) ; Genetic algorithms ; Genetic programming ; Particle swarm optimization (PSO) ; Statistical methods ; Storms
EI分类号
Precipitation:443.3 ; Information Theory and Signal Processing:716.1 ; Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Optimization Techniques:921.5 ; Mathematical Statistics:922.2
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:66
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25609
专题工学院_计算机科学与工程系
作者单位
1.Shenzhen Univ, Coll Math & Stat, Shenzhen, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Sch Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
3.Deakin Univ, Inst Intelligent Syst Res & Innovat, Geelong, Vic, Australia
4.Wawasan Open Univ, Sch Sci & Technol, George Town, Pulau Pinang, Malaysia
推荐引用方式
GB/T 7714
Pourpanah, Farhad,Shi, Yuhui,Lim, Chee Peng,et al. Feature selection based on brain storm optimization for data classification[J]. APPLIED SOFT COMPUTING,2019,80:761-775.
APA
Pourpanah, Farhad,Shi, Yuhui,Lim, Chee Peng,Hao, Qi,&Tan, Choo Jun.(2019).Feature selection based on brain storm optimization for data classification.APPLIED SOFT COMPUTING,80,761-775.
MLA
Pourpanah, Farhad,et al."Feature selection based on brain storm optimization for data classification".APPLIED SOFT COMPUTING 80(2019):761-775.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Pourpanah-2019-Featu(815KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pourpanah, Farhad]的文章
[Shi, Yuhui]的文章
[Lim, Chee Peng]的文章
百度学术
百度学术中相似的文章
[Pourpanah, Farhad]的文章
[Shi, Yuhui]的文章
[Lim, Chee Peng]的文章
必应学术
必应学术中相似的文章
[Pourpanah, Farhad]的文章
[Shi, Yuhui]的文章
[Lim, Chee Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。