题名 | Feature selection based on brain storm optimization for data classification |
作者 | |
通讯作者 | Pourpanah, Farhad |
发表日期 | 2019-07
|
DOI | |
发表期刊 | |
ISSN | 1568-4946
|
EISSN | 1872-9681
|
卷号 | 80页码:761-775 |
摘要 | Brain storm optimization (BSO) is a new and effective swarm intelligence method inspired by the human brainstorming process. This paper presents a novel BSO-based feature selection technique for data classification. Specifically, the Fuzzy ARTMAP (FAM) model, which is employed as an incremental learning neural network, is combined with BSO, which acts as a feature selection method, to produce the hybrid FAM-BSO model for feature selection and optimization. Firstly, FAM is used to create a number of prototype nodes incrementally. Then, BSO is used to search and select an optimal sub-set of features that is able to produce high accuracy with the minimum number of features. Ten benchmark problems and a real-world case study are employed to evaluate the performance of FAM-BSO. The results are quantified statistically using the bootstrap method with the 95% confidence intervals. The outcome indicates that FAM-BSO is able to produce promising results as compared with those from original FAM and other feature selection methods including particle swarm optimization, genetic algorithm, genetic programming, and ant colony optimization. (C) 2019 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Natural Science Foundation of Shenzhen University[827-000140]
; Natural Science Foundation of Shenzhen University[827-000230]
; Natural Science Foundation of Shenzhen University[2017060]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
|
WOS记录号 | WOS:000470661600056
|
出版者 | |
EI入藏号 | 20192006923594
|
EI主题词 | Ant colony optimization
; Artificial intelligence
; Benchmarking
; Classification (of information)
; Genetic algorithms
; Genetic programming
; Particle swarm optimization (PSO)
; Statistical methods
; Storms
|
EI分类号 | Precipitation:443.3
; Information Theory and Signal Processing:716.1
; Computer Programming:723.1
; Artificial Intelligence:723.4
; Optimization Techniques:921.5
; Mathematical Statistics:922.2
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:66
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25609 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Shenzhen Univ, Coll Math & Stat, Shenzhen, Guangdong, Peoples R China 2.Southern Univ Sci & Technol, Sch Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China 3.Deakin Univ, Inst Intelligent Syst Res & Innovat, Geelong, Vic, Australia 4.Wawasan Open Univ, Sch Sci & Technol, George Town, Pulau Pinang, Malaysia |
推荐引用方式 GB/T 7714 |
Pourpanah, Farhad,Shi, Yuhui,Lim, Chee Peng,et al. Feature selection based on brain storm optimization for data classification[J]. APPLIED SOFT COMPUTING,2019,80:761-775.
|
APA |
Pourpanah, Farhad,Shi, Yuhui,Lim, Chee Peng,Hao, Qi,&Tan, Choo Jun.(2019).Feature selection based on brain storm optimization for data classification.APPLIED SOFT COMPUTING,80,761-775.
|
MLA |
Pourpanah, Farhad,et al."Feature selection based on brain storm optimization for data classification".APPLIED SOFT COMPUTING 80(2019):761-775.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Pourpanah-2019-Featu(815KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论