中文版 | English
题名

Long-term mean river discharge estimation with multi-source grid-based global datasets

作者
通讯作者Shi, Haiyun
发表日期
2021-11-01
DOI
发表期刊
ISSN
1436-3240
EISSN
1436-3259
卷号36页码:679-691
摘要
Estimation of long-term river discharge can be made from various sources that may have different levels of accuracy in different regions. Based on three grid-based global datasets from runoff map, model simulations, and reanalysis data, respectively, we first evaluate each dataset at the annual scale to determine the datasets with the highest and lowest accuracy for each river basin; and then derive a dataset that integrates only the highest-accuracy dataset for each river basin. We use the relative error (RE) and the mean relative error (MARE) as performance indicators. Results indicate that (1) the datasets from runoff map and model simulations have higher accuracy than that from the reanalysis data; and (2) the overall performance of the integrated dataset at the annual scale (i.e., MARE = 15%) is better than that of any of the three original datasets. We also evaluate the daily performance of two river discharge datasets from model simulations and reanalysis data in data-scarce regions (i.e., source regions and small river basins), and find that the dataset from reanalysis data has better performance. The outcomes can provide new avenues to recognize the most appropriate dataset for a given river basin and enhance the comprehensive utilization of multi-source grid-based global river discharge datasets.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[51909117]
WOS研究方向
Engineering ; Environmental Sciences & Ecology ; Mathematics ; Water Resources
WOS类目
Engineering, Environmental ; Engineering, Civil ; Environmental Sciences ; Statistics & Probability ; Water Resources
WOS记录号
WOS:000717369000001
出版者
EI入藏号
20214611154516
EI主题词
Rivers ; Watersheds
EI分类号
Flood Control:442.1 ; Surface Water:444.1
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256193
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Guangdong Prov Key Lab Soil & Groundwater Pollut, Shenzhen, Guangdong, Peoples R China
3.Inst Basic Sci, Ctr Climate Phys, Busan, South Korea
4.Indian Inst Technol, Dept Civil Engn, Mumbai, Maharashtra, India
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Liu, Suning,Shi, Haiyun,Sivakumar, Bellie. Long-term mean river discharge estimation with multi-source grid-based global datasets[J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,2021,36:679-691.
APA
Liu, Suning,Shi, Haiyun,&Sivakumar, Bellie.(2021).Long-term mean river discharge estimation with multi-source grid-based global datasets.STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,36,679-691.
MLA
Liu, Suning,et al."Long-term mean river discharge estimation with multi-source grid-based global datasets".STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 36(2021):679-691.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Suning]的文章
[Shi, Haiyun]的文章
[Sivakumar, Bellie]的文章
百度学术
百度学术中相似的文章
[Liu, Suning]的文章
[Shi, Haiyun]的文章
[Sivakumar, Bellie]的文章
必应学术
必应学术中相似的文章
[Liu, Suning]的文章
[Shi, Haiyun]的文章
[Sivakumar, Bellie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。