题名 | Long-term mean river discharge estimation with multi-source grid-based global datasets |
作者 | |
通讯作者 | Shi, Haiyun |
发表日期 | 2021-11-01
|
DOI | |
发表期刊 | |
ISSN | 1436-3240
|
EISSN | 1436-3259
|
卷号 | 36页码:679-691 |
摘要 | Estimation of long-term river discharge can be made from various sources that may have different levels of accuracy in different regions. Based on three grid-based global datasets from runoff map, model simulations, and reanalysis data, respectively, we first evaluate each dataset at the annual scale to determine the datasets with the highest and lowest accuracy for each river basin; and then derive a dataset that integrates only the highest-accuracy dataset for each river basin. We use the relative error (RE) and the mean relative error (MARE) as performance indicators. Results indicate that (1) the datasets from runoff map and model simulations have higher accuracy than that from the reanalysis data; and (2) the overall performance of the integrated dataset at the annual scale (i.e., MARE = 15%) is better than that of any of the three original datasets. We also evaluate the daily performance of two river discharge datasets from model simulations and reanalysis data in data-scarce regions (i.e., source regions and small river basins), and find that the dataset from reanalysis data has better performance. The outcomes can provide new avenues to recognize the most appropriate dataset for a given river basin and enhance the comprehensive utilization of multi-source grid-based global river discharge datasets. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[51909117]
|
WOS研究方向 | Engineering
; Environmental Sciences & Ecology
; Mathematics
; Water Resources
|
WOS类目 | Engineering, Environmental
; Engineering, Civil
; Environmental Sciences
; Statistics & Probability
; Water Resources
|
WOS记录号 | WOS:000717369000001
|
出版者 | |
EI入藏号 | 20214611154516
|
EI主题词 | Rivers
; Watersheds
|
EI分类号 | Flood Control:442.1
; Surface Water:444.1
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256193 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen, Guangdong, Peoples R China 2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Guangdong Prov Key Lab Soil & Groundwater Pollut, Shenzhen, Guangdong, Peoples R China 3.Inst Basic Sci, Ctr Climate Phys, Busan, South Korea 4.Indian Inst Technol, Dept Civil Engn, Mumbai, Maharashtra, India |
第一作者单位 | 环境科学与工程学院 |
通讯作者单位 | 环境科学与工程学院 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Liu, Suning,Shi, Haiyun,Sivakumar, Bellie. Long-term mean river discharge estimation with multi-source grid-based global datasets[J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,2021,36:679-691.
|
APA |
Liu, Suning,Shi, Haiyun,&Sivakumar, Bellie.(2021).Long-term mean river discharge estimation with multi-source grid-based global datasets.STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,36,679-691.
|
MLA |
Liu, Suning,et al."Long-term mean river discharge estimation with multi-source grid-based global datasets".STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 36(2021):679-691.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论