中文版 | English
题名

Inland Reservoir Water Quality Inversion and Eutrophication Evaluation Using BP Neural Network and Remote Sensing Imagery: A Case Study of Dashahe Reservoir

作者
通讯作者Zheng, Yanhui
发表日期
2021-10-01
DOI
发表期刊
EISSN
2073-4441
卷号13期号:20
摘要
In this study, an inland reservoir water quality parameters' inversion model was developed using a back propagation (BP) neural network to conduct reservoir eutrophication evaluation, according to multi-temporal remote sensing images and field observations. The inversion model based on the BP neural network (the BP inversion model) was applied to a large inland reservoir in Jiangmen city, South China, according to the field observations of five water quality parameters, namely, Chlorophyl-a (Chl-a), Secchi Depth (SD), total phosphorus (TP), total nitrogen (TN), and Permanganate of Chemical Oxygen Demand (CODMn), and twelve periods of Landsat8 satellite remote sensing images. The reservoir eutrophication was evaluated. The accuracy of the BP inversion model for each water parameter was compared with that of the linear inversion model, and the BP inversion models of two parameters (i.e., Chl-a and CODMn) with larger fluctuation range were superior to the two multiple linear inversion models due to the ability of improving the generalization of the BP neural network. The Dashahe Reservoir was basically in the state of mesotrophication and light eutrophication. The area of light eutrophication accounted for larger proportions in spring and autumn, and the reservoir inflow was the main source of nutrient salts.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[51979043]
WOS研究方向
Environmental Sciences & Ecology ; Water Resources
WOS类目
Environmental Sciences ; Water Resources
WOS记录号
WOS:000716353600001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:36
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256195
专题工学院_环境科学与工程学院
作者单位
1.Guangdong Univ Technol, Inst Environm & Ecol Engn, Guangzhou 510006, Peoples R China
2.Guangdong Prov Key Lab Water Qual Improvement & E, Guangzhou 510006, Peoples R China
3.South Univ Sci & Technol China, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Peoples R China
4.Guangzhou Franzero Water Technol Co Ltd, Guangzhou 510663, Peoples R China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
He, Yanhu,Gong, Zhenjie,Zheng, Yanhui,et al. Inland Reservoir Water Quality Inversion and Eutrophication Evaluation Using BP Neural Network and Remote Sensing Imagery: A Case Study of Dashahe Reservoir[J]. WATER,2021,13(20).
APA
He, Yanhu,Gong, Zhenjie,Zheng, Yanhui,&Zhang, Yuanbo.(2021).Inland Reservoir Water Quality Inversion and Eutrophication Evaluation Using BP Neural Network and Remote Sensing Imagery: A Case Study of Dashahe Reservoir.WATER,13(20).
MLA
He, Yanhu,et al."Inland Reservoir Water Quality Inversion and Eutrophication Evaluation Using BP Neural Network and Remote Sensing Imagery: A Case Study of Dashahe Reservoir".WATER 13.20(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, Yanhu]的文章
[Gong, Zhenjie]的文章
[Zheng, Yanhui]的文章
百度学术
百度学术中相似的文章
[He, Yanhu]的文章
[Gong, Zhenjie]的文章
[Zheng, Yanhui]的文章
必应学术
必应学术中相似的文章
[He, Yanhu]的文章
[Gong, Zhenjie]的文章
[Zheng, Yanhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。