中文版 | English
题名

A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning

作者
通讯作者Wen, Shuhuan
发表日期
2021-10-01
DOI
发表期刊
ISSN
1568-4946
EISSN
1872-9681
卷号110
摘要
The adaptability of multi-robot systems in complex environments is a hot topic. Aiming at static and dynamic obstacles in complex environments, this paper presents dynamic proximal meta policy optimization with covariance matrix adaptation evolutionary strategies (dynamic-PMPO-CMA) to avoid obstacles and realize autonomous navigation. Firstly, we propose dynamic proximal policy optimization with covariance matrix adaptation evolutionary strategies (dynamic-PPO-CMA) based on original proximal policy optimization (PPO) to obtain a valid policy of obstacles avoidance. The simulation results show that the proposed dynamic-PPO-CMA can avoid obstacles and reach the designated target position successfully. Secondly, in order to improve the adaptability of multi-robot systems in different environments, we integrate meta-learning with dynamic-PPO-CMA to form the dynamic-PMPO-CMA algorithm. In training process, we use the proposed dynamic-PMPO-CMA to train robots to learn multi-task policy. Finally, in testing process, transfer learning is introduced to the proposed dynamic-PMPO-CMA algorithm. The trained parameters of meta policy are transferred to new environments and regarded as the initial parameters. The simulation results show that the proposed algorithm can have faster convergence rate and arrive the destination more quickly than PPO, PMPO and dynamic-PPO-CMA. (C) 2021 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foun-dation of China[61773333] ; Royal Society of the United Kingdom Cooperation and Exchange Project[62111530148]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000713098900001
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:37
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256201
专题工学院_电子与电气工程系
作者单位
1.Yanshan Univ, Engn Res Ctr, Minist Educ Intelligent Control Syst & Intelligen, Qinhuangdao 066004, Hebei, Peoples R China
2.Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao 066004, Hebei, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518000, Peoples R China
推荐引用方式
GB/T 7714
Wen, Shuhuan,Wen, Zeteng,Zhang, Di,et al. A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning[J]. APPLIED SOFT COMPUTING,2021,110.
APA
Wen, Shuhuan,Wen, Zeteng,Zhang, Di,Zhang, Hong,&Wang, Tao.(2021).A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning.APPLIED SOFT COMPUTING,110.
MLA
Wen, Shuhuan,et al."A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning".APPLIED SOFT COMPUTING 110(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wen, Shuhuan]的文章
[Wen, Zeteng]的文章
[Zhang, Di]的文章
百度学术
百度学术中相似的文章
[Wen, Shuhuan]的文章
[Wen, Zeteng]的文章
[Zhang, Di]的文章
必应学术
必应学术中相似的文章
[Wen, Shuhuan]的文章
[Wen, Zeteng]的文章
[Zhang, Di]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。