中文版 | English
题名

Deep neural network modeling of unknown partial differential equations in nodal space

作者
通讯作者Xiu,Dongbin
共同第一作者Chen,Zhen; Churchill,Victor; Wu,Kailiang; Xiu,Dongbin
发表日期
2022-01-15
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号449
摘要

We present a numerical framework for deep neural network (DNN) modeling of unknown time-dependent partial differential equation (PDE) using their trajectory data. Unlike the recent work of Wu and Xiu (2020) [26], where the learning takes place in modal/Fourier space, the current method conducts the learning and modeling in physical space and uses measurement data as nodal values. We present a DNN structure that has a direct correspondence to the evolution operator of the underlying PDE, thus establishing the mathematical foundation of the DNN model. The DNN model also does not require any geometric information of the data nodes. Consequently, a trained DNN defines a predictive model for the underlying unknown PDE over structureless grids. A set of examples, including linear and nonlinear scalar PDE, system of PDEs, in both one dimension and two dimensions, over structured and unstructured grids, are presented to demonstrate the effectiveness of the proposed DNN modeling. Extension to other equations such as differential-integral equation, is also discussed.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
共同第一 ; 其他
资助项目
AFOSR[FA9550-18-1-0102]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000723567300016
出版者
EI入藏号
20214611150341
EI主题词
Integral Equations ; Mathematical Operators ; Partial Differential Equations
EI分类号
Ergonomics And Human Factors Engineering:461.4 ; Calculus:921.2
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85118850487
来源库
Scopus
引用统计
被引频次[WOS]:21
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256298
专题理学院_数学系
作者单位
1.Department of Mathematics,The Ohio State University,Columbus,43210,United States
2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Chen,Zhen,Churchill,Victor,Wu,Kailiang,et al. Deep neural network modeling of unknown partial differential equations in nodal space[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2022,449.
APA
Chen,Zhen,Churchill,Victor,Wu,Kailiang,&Xiu,Dongbin.(2022).Deep neural network modeling of unknown partial differential equations in nodal space.JOURNAL OF COMPUTATIONAL PHYSICS,449.
MLA
Chen,Zhen,et al."Deep neural network modeling of unknown partial differential equations in nodal space".JOURNAL OF COMPUTATIONAL PHYSICS 449(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Deep neural network (832KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Zhen]的文章
[Churchill,Victor]的文章
[Wu,Kailiang]的文章
百度学术
百度学术中相似的文章
[Chen,Zhen]的文章
[Churchill,Victor]的文章
[Wu,Kailiang]的文章
必应学术
必应学术中相似的文章
[Chen,Zhen]的文章
[Churchill,Victor]的文章
[Wu,Kailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。