题名 | Deep neural network modeling of unknown partial differential equations in nodal space |
作者 | |
通讯作者 | Xiu,Dongbin |
共同第一作者 | Chen,Zhen; Churchill,Victor; Wu,Kailiang; Xiu,Dongbin |
发表日期 | 2022-01-15
|
DOI | |
发表期刊 | |
ISSN | 0021-9991
|
EISSN | 1090-2716
|
卷号 | 449 |
摘要 | We present a numerical framework for deep neural network (DNN) modeling of unknown time-dependent partial differential equation (PDE) using their trajectory data. Unlike the recent work of Wu and Xiu (2020) [26], where the learning takes place in modal/Fourier space, the current method conducts the learning and modeling in physical space and uses measurement data as nodal values. We present a DNN structure that has a direct correspondence to the evolution operator of the underlying PDE, thus establishing the mathematical foundation of the DNN model. The DNN model also does not require any geometric information of the data nodes. Consequently, a trained DNN defines a predictive model for the underlying unknown PDE over structureless grids. A set of examples, including linear and nonlinear scalar PDE, system of PDEs, in both one dimension and two dimensions, over structured and unstructured grids, are presented to demonstrate the effectiveness of the proposed DNN modeling. Extension to other equations such as differential-integral equation, is also discussed. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 共同第一
; 其他
|
资助项目 | AFOSR[FA9550-18-1-0102]
|
WOS研究方向 | Computer Science
; Physics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Physics, Mathematical
|
WOS记录号 | WOS:000723567300016
|
出版者 | |
EI入藏号 | 20214611150341
|
EI主题词 | Integral Equations
; Mathematical Operators
; Partial Differential Equations
|
EI分类号 | Ergonomics And Human Factors Engineering:461.4
; Calculus:921.2
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85118850487
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:21
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256298 |
专题 | 理学院_数学系 |
作者单位 | 1.Department of Mathematics,The Ohio State University,Columbus,43210,United States 2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Chen,Zhen,Churchill,Victor,Wu,Kailiang,et al. Deep neural network modeling of unknown partial differential equations in nodal space[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2022,449.
|
APA |
Chen,Zhen,Churchill,Victor,Wu,Kailiang,&Xiu,Dongbin.(2022).Deep neural network modeling of unknown partial differential equations in nodal space.JOURNAL OF COMPUTATIONAL PHYSICS,449.
|
MLA |
Chen,Zhen,et al."Deep neural network modeling of unknown partial differential equations in nodal space".JOURNAL OF COMPUTATIONAL PHYSICS 449(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Deep neural network (832KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论