题名 | Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation |
作者 | |
通讯作者 | Ran,Xuming; Liu,Quanying |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 0893-6080
|
EISSN | 1879-2782
|
卷号 | 145页码:199-208 |
摘要 | Variational autoencoders (VAEs) are influential generative models with rich representation capabilities from the deep neural network architecture and Bayesian method. However, VAE models have a weakness that assign a higher likelihood to out-of-distribution (OOD) inputs than in-distribution (ID) inputs. To address this problem, a reliable uncertainty estimation is considered to be critical for in-depth understanding of OOD inputs. In this study, we propose an improved noise contrastive prior (INCP) to be able to integrate into the encoder of VAEs, called INCPVAE. INCP is scalable, trainable and compatible with VAEs, and it also adopts the merits from the INCP for uncertainty estimation. Experiments on various datasets demonstrate that compared to the standard VAEs, our model is superior in uncertainty estimation for the OOD data and is robust in anomaly detection tasks. The INCPVAE model obtains reliable uncertainty estimation for OOD inputs and solves the OOD problem in VAE models. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[62001205]
; Shenzhen Science and Technology Innova-tion Committee[20200925155957004,"SGDX2020110309280100","KCXFZ2020122117340001"]
; Guangdong Natural Science Founda-tion Joint Fund[2019A1515111038]
; Shenzhen Key Laboratory of Smart Healthcare Engineering[ZDSYS20200811144003009]
; CAAI-Huawei Mindspore Open Fund[CAAIXSJLJJ-2020-024A]
; Fun-damental Research Funds for Central Universities[DUT21RC (3) 091]
; Beijing Science and Technology Programs[Z191100007519009]
|
WOS研究方向 | Computer Science
; Neurosciences & Neurology
|
WOS类目 | Computer Science, Artificial Intelligence
; Neurosciences
|
WOS记录号 | WOS:000719201300005
|
出版者 | |
EI入藏号 | 20214611150924
|
EI主题词 | Anomaly detection
; Bayesian networks
; Network architecture
; Signal encoding
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85118859997
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:18
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256305 |
专题 | 工学院_生物医学工程系 工学院_计算机科学与工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Smart Healthcare Engineering,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Center for Brain Inspired Computing Research,Department of Precision Instrument,Tsinghua University,Beijing,100084,China 3.China Automotive Engineering Research Institute,Chongqing,401122,China 4.School of Artifical Intelligence,Electronic and Electrical Engineering,School of Artifical Intelligence Dalian University of Technology,Dalian,116024,China 5.College of Mathematics and Statistics,Chongqing Jiaotong University,Chongqing,400074,China 6.College of Computer Science and Technology,Zhejiang University,Hangzhou,310027,China |
第一作者单位 | 生物医学工程系 |
通讯作者单位 | 生物医学工程系 |
第一作者的第一单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Ran,Xuming,Xu,Mingkun,Mei,Lingrui,et al. Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation[J]. NEURAL NETWORKS,2022,145:199-208.
|
APA |
Ran,Xuming,Xu,Mingkun,Mei,Lingrui,Xu,Qi,&Liu,Quanying.(2022).Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation.NEURAL NETWORKS,145,199-208.
|
MLA |
Ran,Xuming,et al."Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation".NEURAL NETWORKS 145(2022):199-208.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论