中文版 | English
题名

Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation

作者
通讯作者Ran,Xuming; Liu,Quanying
发表日期
2022
DOI
发表期刊
ISSN
0893-6080
EISSN
1879-2782
卷号145页码:199-208
摘要

Variational autoencoders (VAEs) are influential generative models with rich representation capabilities from the deep neural network architecture and Bayesian method. However, VAE models have a weakness that assign a higher likelihood to out-of-distribution (OOD) inputs than in-distribution (ID) inputs. To address this problem, a reliable uncertainty estimation is considered to be critical for in-depth understanding of OOD inputs. In this study, we propose an improved noise contrastive prior (INCP) to be able to integrate into the encoder of VAEs, called INCPVAE. INCP is scalable, trainable and compatible with VAEs, and it also adopts the merits from the INCP for uncertainty estimation. Experiments on various datasets demonstrate that compared to the standard VAEs, our model is superior in uncertainty estimation for the OOD data and is robust in anomaly detection tasks. The INCPVAE model obtains reliable uncertainty estimation for OOD inputs and solves the OOD problem in VAE models.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62001205] ; Shenzhen Science and Technology Innova-tion Committee[20200925155957004,"SGDX2020110309280100","KCXFZ2020122117340001"] ; Guangdong Natural Science Founda-tion Joint Fund[2019A1515111038] ; Shenzhen Key Laboratory of Smart Healthcare Engineering[ZDSYS20200811144003009] ; CAAI-Huawei Mindspore Open Fund[CAAIXSJLJJ-2020-024A] ; Fun-damental Research Funds for Central Universities[DUT21RC (3) 091] ; Beijing Science and Technology Programs[Z191100007519009]
WOS研究方向
Computer Science ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号
WOS:000719201300005
出版者
EI入藏号
20214611150924
EI主题词
Anomaly detection ; Bayesian networks ; Network architecture ; Signal encoding
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85118859997
来源库
Scopus
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256305
专题工学院_生物医学工程系
工学院_计算机科学与工程系
作者单位
1.Shenzhen Key Laboratory of Smart Healthcare Engineering,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Center for Brain Inspired Computing Research,Department of Precision Instrument,Tsinghua University,Beijing,100084,China
3.China Automotive Engineering Research Institute,Chongqing,401122,China
4.School of Artifical Intelligence,Electronic and Electrical Engineering,School of Artifical Intelligence Dalian University of Technology,Dalian,116024,China
5.College of Mathematics and Statistics,Chongqing Jiaotong University,Chongqing,400074,China
6.College of Computer Science and Technology,Zhejiang University,Hangzhou,310027,China
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Ran,Xuming,Xu,Mingkun,Mei,Lingrui,et al. Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation[J]. NEURAL NETWORKS,2022,145:199-208.
APA
Ran,Xuming,Xu,Mingkun,Mei,Lingrui,Xu,Qi,&Liu,Quanying.(2022).Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation.NEURAL NETWORKS,145,199-208.
MLA
Ran,Xuming,et al."Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation".NEURAL NETWORKS 145(2022):199-208.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ran,Xuming]的文章
[Xu,Mingkun]的文章
[Mei,Lingrui]的文章
百度学术
百度学术中相似的文章
[Ran,Xuming]的文章
[Xu,Mingkun]的文章
[Mei,Lingrui]的文章
必应学术
必应学术中相似的文章
[Ran,Xuming]的文章
[Xu,Mingkun]的文章
[Mei,Lingrui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。