中文版 | English
题名

Time-Aware Recommender System via Continuous-Time Modeling

作者
通讯作者Zhang,Yu
DOI
发表日期
2021-10-26
会议录名称
页码
2872-2876
摘要
The overload of information on the Internet becomes ubiquitous nowadays, which makes the role of recommender systems more important. In recommender systems, the interest of users and popularity of items are not static, but can change drastically. Thus modeling the temporal dynamic of user-item interactions is crucial in recommender systems. The newly proposed Neural Ordinary Differential Equation (NODE) method is able to modeling the temporal mechanism of a system with neural networks. By using the ODE-LSTM method, which unites the ability of NODE to handle continuous time and that of LSTM to address sequential data, in this paper we achieve significant improvements for the recommendation task on several real-world datasets with the time irregularity. To handle sessions with different timestamps in ODE-LSTM, we propose a collective timeline technique that contributes a lot to the performance improvement. Moreover, we find that reducing the scale of time intervals in sessions significantly improves the recommendation performance.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20214711190092
EI主题词
Continuous time systems ; Long short-term memory ; Ordinary differential equations ; User profile
EI分类号
Computer Applications:723.5 ; Calculus:921.2 ; Systems Science:961
Scopus记录号
2-s2.0-85119195936
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256335
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Shenzhen,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Bao,Jianghan,Zhang,Yu. Time-Aware Recommender System via Continuous-Time Modeling[C],2021:2872-2876.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bao,Jianghan]的文章
[Zhang,Yu]的文章
百度学术
百度学术中相似的文章
[Bao,Jianghan]的文章
[Zhang,Yu]的文章
必应学术
必应学术中相似的文章
[Bao,Jianghan]的文章
[Zhang,Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。