题名 | Time-Aware Recommender System via Continuous-Time Modeling |
作者 | |
通讯作者 | Zhang,Yu |
DOI | |
发表日期 | 2021-10-26
|
会议录名称 | |
页码 | 2872-2876
|
摘要 | The overload of information on the Internet becomes ubiquitous nowadays, which makes the role of recommender systems more important. In recommender systems, the interest of users and popularity of items are not static, but can change drastically. Thus modeling the temporal dynamic of user-item interactions is crucial in recommender systems. The newly proposed Neural Ordinary Differential Equation (NODE) method is able to modeling the temporal mechanism of a system with neural networks. By using the ODE-LSTM method, which unites the ability of NODE to handle continuous time and that of LSTM to address sequential data, in this paper we achieve significant improvements for the recommendation task on several real-world datasets with the time irregularity. To handle sessions with different timestamps in ODE-LSTM, we propose a collective timeline technique that contributes a lot to the performance improvement. Moreover, we find that reducing the scale of time intervals in sessions significantly improves the recommendation performance. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20214711190092
|
EI主题词 | Continuous time systems
; Long short-term memory
; Ordinary differential equations
; User profile
|
EI分类号 | Computer Applications:723.5
; Calculus:921.2
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85119195936
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256335 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Bao,Jianghan,Zhang,Yu. Time-Aware Recommender System via Continuous-Time Modeling[C],2021:2872-2876.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论