题名 | Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition |
作者 | |
通讯作者 | Thean,Aaron Voon Yew |
共同第一作者 | Pan,Jieming; Li,Yida; Luo,Yuxuan; Zhang,Xiangyu |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 2379-3694
|
EISSN | 2379-3694
|
卷号 | 6期号:11页码:4156-4166 |
摘要 | As 5G communication technology allows for speedier access to extended information and knowledge, a more sophisticated human-machine interface beyond touchscreens and keyboards is necessary to improve the communication bandwidth and overcome the interfacing barrier. However, the full extent of human interaction beyond operation dexterity, spatial awareness, sensory feedback, and collaborative capability to be replicated completely remains a challenge. Here, we demonstrate a hybrid-flexible wearable system, consisting of simple bimodal capacitive sensors and a customized low power interface circuit integrated with machine learning algorithms, to accurately recognize complex gestures. The 16 channel sensor array extracts spatial and temporal information of the finger movement (deformation) and hand location (proximity) simultaneously. Using machine learning, over 99 and 91% accuracy are achieved for user-independent static and dynamic gesture recognition, respectively. Our approach proves that an extremely simple bimodal sensing platform that identifies local interactions and perceives spatial context concurrently, is crucial in the field of sign communication, remote robotics, and smart manufacturing. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 共同第一
; 其他
|
资助项目 | Singapore's National Research Foundation[NRF-RSS2015-003]
; AME programmatic funding scheme of Cyber Physiochemical Interface (CPI) project[A18A1b0045]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
|
WOS类目 | Chemistry, Multidisciplinary
; Chemistry, Analytical
; Nanoscience & Nanotechnology
|
WOS记录号 | WOS:000755689100031
|
出版者 | |
EI入藏号 | 20214711182205
|
EI主题词 | Capacitive Sensors
; Flexible Electronics
; Gesture Recognition
; Learning Algorithms
; Low Power Electronics
; Machine Learning
; Wearable Sensors
|
EI分类号 | Electronic Equipment, General Purpose And Industrial:715
; Radio Systems And Equipment:716.3
; Machine Learning:723.4.2
; Control Devices:732
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:32
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256357 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | 1.Department of Electrical and Computer Engineering,National University of Singapore,Singapore,4 Engineering Drive 3,117583,Singapore 2.Southern University of Science and Technology, Shenzhen 518055, China |
推荐引用方式 GB/T 7714 |
Pan,Jieming,Li,Yida,Luo,Yuxuan,et al. Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition[J]. ACS Sensors,2021,6(11):4156-4166.
|
APA |
Pan,Jieming.,Li,Yida.,Luo,Yuxuan.,Zhang,Xiangyu.,Wang,Xinghua.,...&Thean,Aaron Voon Yew.(2021).Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition.ACS Sensors,6(11),4156-4166.
|
MLA |
Pan,Jieming,et al."Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition".ACS Sensors 6.11(2021):4156-4166.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Hybrid-Flexible Bimo(8828KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论