中文版 | English
题名

Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition

作者
通讯作者Thean,Aaron Voon Yew
共同第一作者Pan,Jieming; Li,Yida; Luo,Yuxuan; Zhang,Xiangyu
发表日期
2021
DOI
发表期刊
ISSN
2379-3694
EISSN
2379-3694
卷号6期号:11页码:4156-4166
摘要

As 5G communication technology allows for speedier access to extended information and knowledge, a more sophisticated human-machine interface beyond touchscreens and keyboards is necessary to improve the communication bandwidth and overcome the interfacing barrier. However, the full extent of human interaction beyond operation dexterity, spatial awareness, sensory feedback, and collaborative capability to be replicated completely remains a challenge. Here, we demonstrate a hybrid-flexible wearable system, consisting of simple bimodal capacitive sensors and a customized low power interface circuit integrated with machine learning algorithms, to accurately recognize complex gestures. The 16 channel sensor array extracts spatial and temporal information of the finger movement (deformation) and hand location (proximity) simultaneously. Using machine learning, over 99 and 91% accuracy are achieved for user-independent static and dynamic gesture recognition, respectively. Our approach proves that an extremely simple bimodal sensing platform that identifies local interactions and perceives spatial context concurrently, is crucial in the field of sign communication, remote robotics, and smart manufacturing.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
共同第一 ; 其他
资助项目
Singapore's National Research Foundation[NRF-RSS2015-003] ; AME programmatic funding scheme of Cyber Physiochemical Interface (CPI) project[A18A1b0045]
WOS研究方向
Chemistry ; Science & Technology - Other Topics
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Analytical ; Nanoscience & Nanotechnology
WOS记录号
WOS:000755689100031
出版者
EI入藏号
20214711182205
EI主题词
Capacitive Sensors ; Flexible Electronics ; Gesture Recognition ; Learning Algorithms ; Low Power Electronics ; Machine Learning ; Wearable Sensors
EI分类号
Electronic Equipment, General Purpose And Industrial:715 ; Radio Systems And Equipment:716.3 ; Machine Learning:723.4.2 ; Control Devices:732
来源库
Web of Science
引用统计
被引频次[WOS]:32
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256357
专题南方科技大学
工学院_深港微电子学院
作者单位
1.Department of Electrical and Computer Engineering,National University of Singapore,Singapore,4 Engineering Drive 3,117583,Singapore
2.Southern University of Science and Technology, Shenzhen 518055, China
推荐引用方式
GB/T 7714
Pan,Jieming,Li,Yida,Luo,Yuxuan,et al. Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition[J]. ACS Sensors,2021,6(11):4156-4166.
APA
Pan,Jieming.,Li,Yida.,Luo,Yuxuan.,Zhang,Xiangyu.,Wang,Xinghua.,...&Thean,Aaron Voon Yew.(2021).Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition.ACS Sensors,6(11),4156-4166.
MLA
Pan,Jieming,et al."Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition".ACS Sensors 6.11(2021):4156-4166.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Hybrid-Flexible Bimo(8828KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pan,Jieming]的文章
[Li,Yida]的文章
[Luo,Yuxuan]的文章
百度学术
百度学术中相似的文章
[Pan,Jieming]的文章
[Li,Yida]的文章
[Luo,Yuxuan]的文章
必应学术
必应学术中相似的文章
[Pan,Jieming]的文章
[Li,Yida]的文章
[Luo,Yuxuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。