题名 | Framelet block thresholding estimator for sparse functional data |
作者 | |
通讯作者 | Cheng,Kun |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 0047-259X
|
EISSN | 1095-7243
|
卷号 | 189 |
摘要 | Nonparametric estimation of mean and covariance functions based on discretely observed data is important in functional data analysis. In this paper, we propose a framelet block thresholding method for the case of sparsely observed functional data. The procedure is easily implemented and the resultant estimators are represented as explicit B-spline expressions. For sparsely observed functional data, we establish, under some mild conditions but without knowing the smoothness parameter, convergence rates of mean integrated squared errors for mean and covariance estimators respectively. In particular, the mean estimator attains minimax optimal rate. The simulated and real data examples are provided to offer empirical support of the theoretical properties. Compared to the existing methods, the proposed method outperforms in adapting automatically to local variations. |
关键词 | |
相关链接 | [Scopus记录] |
语种 | 英语
|
学校署名 | 其他
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85118987489
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256379 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.School of Mathematical Sciences,Beihang University,Beijing,100191,China 2.Department of Statistics and Data Science,The Southern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Chen,Di Rong,Cheng,Kun,Liu,Chao. Framelet block thresholding estimator for sparse functional data[J]. JOURNAL OF MULTIVARIATE ANALYSIS,2021,189.
|
APA |
Chen,Di Rong,Cheng,Kun,&Liu,Chao.(2021).Framelet block thresholding estimator for sparse functional data.JOURNAL OF MULTIVARIATE ANALYSIS,189.
|
MLA |
Chen,Di Rong,et al."Framelet block thresholding estimator for sparse functional data".JOURNAL OF MULTIVARIATE ANALYSIS 189(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论