中文版 | English
题名

A decomposition-based hybrid evolutionary algorithm for multi-modal multi-objective optimization

作者
DOI
发表日期
2021
会议名称
Proc. of 2021 IEEE International Conference on Systems, Man, and Cybernetics
ISSN
1062-922X
ISBN
978-1-6654-4208-4
会议录名称
页码
160-167
会议日期
October 17-20, 2021
会议地点
Melbourne, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Multi-modal multi-objective optimization problems (MMOPs) have received increasing attention from the evolutionary multi-objective optimization community. To solve MMOPs, an optimizer is required to locate multiple sets of Pareto optimal solutions in the decision space. In this paper, a novel decomposition-based hybrid evolutionary algorithm is proposed for handling MMOPs efficiently. In the proposed algorithm, each reference vector is associated with a sub-population. In this manner, each reference vector is able to preserve multiple optima of the corresponding sub-problem in its own sub-population. In each generation, the following three procedures are used to update each sub-population. First, the sub-population evolves independently based on the deterministic crowding mechanism to maintain the diversity in the decision space. Second, the sub-population evolves in a collaborative manner with neighboring sub-populations. Subsequently, solutions that are converging to the same optimal solution are identified. All identified solutions except for the best one are re-initialized. This mechanism impels the solutions in each sub-population to converge to different optima in the decision space. Experimental results show that the proposed algorithm achieves superior performance in comparison with four state-of-the-art algorithms on various test problems.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075]
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号
WOS:000800532000022
EI入藏号
20220711617156
EI主题词
Evolutionary algorithms ; Optimal systems ; Pareto principle
EI分类号
Optimization Techniques:921.5 ; Systems Science:961
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659132
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256572
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Y. Peng,H. Ishibuchi. A decomposition-based hybrid evolutionary algorithm for multi-modal multi-objective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:160-167.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Y. Peng]的文章
[H. Ishibuchi]的文章
百度学术
百度学术中相似的文章
[Y. Peng]的文章
[H. Ishibuchi]的文章
必应学术
必应学术中相似的文章
[Y. Peng]的文章
[H. Ishibuchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。