题名 | A decomposition-based hybrid evolutionary algorithm for multi-modal multi-objective optimization |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | Proc. of 2021 IEEE International Conference on Systems, Man, and Cybernetics
|
ISSN | 1062-922X
|
ISBN | 978-1-6654-4208-4
|
会议录名称 | |
页码 | 160-167
|
会议日期 | October 17-20, 2021
|
会议地点 | Melbourne, Australia
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Multi-modal multi-objective optimization problems (MMOPs) have received increasing attention from the evolutionary multi-objective optimization community. To solve MMOPs, an optimizer is required to locate multiple sets of Pareto optimal solutions in the decision space. In this paper, a novel decomposition-based hybrid evolutionary algorithm is proposed for handling MMOPs efficiently. In the proposed algorithm, each reference vector is associated with a sub-population. In this manner, each reference vector is able to preserve multiple optima of the corresponding sub-problem in its own sub-population. In each generation, the following three procedures are used to update each sub-population. First, the sub-population evolves independently based on the deterministic crowding mechanism to maintain the diversity in the decision space. Second, the sub-population evolves in a collaborative manner with neighboring sub-populations. Subsequently, solutions that are converging to the same optimal solution are identified. All identified solutions except for the best one are re-initialized. This mechanism impels the solutions in each sub-population to converge to different optima in the decision space. Experimental results show that the proposed algorithm achieves superior performance in comparison with four state-of-the-art algorithms on various test problems. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Cybernetics
; Computer Science, Information Systems
|
WOS记录号 | WOS:000800532000022
|
EI入藏号 | 20220711617156
|
EI主题词 | Evolutionary algorithms
; Optimal systems
; Pareto principle
|
EI分类号 | Optimization Techniques:921.5
; Systems Science:961
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659132 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256572 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Y. Peng,H. Ishibuchi. A decomposition-based hybrid evolutionary algorithm for multi-modal multi-objective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:160-167.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论