中文版 | English
题名

A two-stage hypervolume contribution approximation method based on R2 indicator

作者
DOI
发表日期
2021
会议名称
Proc. of 2021 IEEE Congress on Evolutionary Computation
ISBN
978-1-7281-8394-7
会议录名称
页码
2468-2475
会议日期
June 28 - July 1, 2021
会议地点
Kraków, Poland
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Hypervolume-based multi-objective evolutionary algorithms (HV-MOEAs) are one of the popular algorithm classes in the evolutionary multi-objective optimization (EMO) community. HV-MOEAs, which can directly optimize the HV of a solution set, are useful in various applications. However, the computation time of HV-MOEAs is very long for many-objective problems since the calculation of the hypervolume contribution (HVC) is computationally expensive. Therefore, a number of approximation methods for the HVC calculation were proposed to reduce its time cost. An R2-based hypervolume contribution approximation (R2-HVC) method was proposed for HVC approximation. However, for HV-MOEAs, the point is to find the worst solution, instead of accurately approximating the HVC of each solution. In this paper, a novel method (i.e., two-stage R2-HVC) is proposed for improving the ability of R2-HVC to correctly identify the worst solution (i.e., the solution with the smallest HVC value) in a solution set. In the proposed method, some candidate solutions are selected based on rough HVC approximation in the first stage, and they are carefully evaluated in the second stage. It is shown through computational experiments that the proposed method performs much better than the original R2-HVC method.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[62002152,61876075]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703866100311
EI入藏号
20220711650729
EI主题词
Approximation algorithms ; Approximation theory ; Evolutionary algorithms
EI分类号
Mathematics:921 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504726
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256574
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Y. Nan,K. Shang,H. Ishibuchi,et al. A two-stage hypervolume contribution approximation method based on R2 indicator[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:2468-2475.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Y. Nan]的文章
[K. Shang]的文章
[H. Ishibuchi]的文章
百度学术
百度学术中相似的文章
[Y. Nan]的文章
[K. Shang]的文章
[H. Ishibuchi]的文章
必应学术
必应学术中相似的文章
[Y. Nan]的文章
[K. Shang]的文章
[H. Ishibuchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。