题名 | A two-stage hypervolume contribution approximation method based on R2 indicator |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | Proc. of 2021 IEEE Congress on Evolutionary Computation
|
ISBN | 978-1-7281-8394-7
|
会议录名称 | |
页码 | 2468-2475
|
会议日期 | June 28 - July 1, 2021
|
会议地点 | Kraków, Poland
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Hypervolume-based multi-objective evolutionary algorithms (HV-MOEAs) are one of the popular algorithm classes in the evolutionary multi-objective optimization (EMO) community. HV-MOEAs, which can directly optimize the HV of a solution set, are useful in various applications. However, the computation time of HV-MOEAs is very long for many-objective problems since the calculation of the hypervolume contribution (HVC) is computationally expensive. Therefore, a number of approximation methods for the HVC calculation were proposed to reduce its time cost. An R2-based hypervolume contribution approximation (R2-HVC) method was proposed for HVC approximation. However, for HV-MOEAs, the point is to find the worst solution, instead of accurately approximating the HVC of each solution. In this paper, a novel method (i.e., two-stage R2-HVC) is proposed for improving the ability of R2-HVC to correctly identify the worst solution (i.e., the solution with the smallest HVC value) in a solution set. In the proposed method, some candidate solutions are selected based on rough HVC approximation in the first stage, and they are carefully evaluated in the second stage. It is shown through computational experiments that the proposed method performs much better than the original R2-HVC method. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62002152,61876075]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703866100311
|
EI入藏号 | 20220711650729
|
EI主题词 | Approximation algorithms
; Approximation theory
; Evolutionary algorithms
|
EI分类号 | Mathematics:921
; Optimization Techniques:921.5
; Numerical Methods:921.6
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504726 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256574 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Y. Nan,K. Shang,H. Ishibuchi,et al. A two-stage hypervolume contribution approximation method based on R2 indicator[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:2468-2475.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论