题名 | Distributed Dynamic Map Fusion via Federated Learning for Intelligent Networked Vehicles |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | 2021 IEEE International Conference on Robotics and Automation (ICRA)
|
ISSN | 2577-087X
|
EISSN | 2577-087X
|
ISBN | 978-1-7281-9078-5
|
会议录名称 | |
卷号 | 2021-May
|
页码 | 953-959
|
会议日期 | 30 May-5 June 2021
|
会议地点 | Xi'an, China
|
会议举办国 | China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The technology of dynamic map fusion among networked vehicles has been developed to enlarge sensing ranges and improve sensing accuracies for individual vehicles. This paper proposes a federated learning (FL) based dynamic map fusion framework to achieve high map quality despite unknown numbers of objects in fields of view (FoVs), various sensing and model uncertainties, and missing data labels for online learning. The novelty of this work is threefold: (1) developing a three-stage fusion scheme to predict the number of objects effectively and to fuse multiple local maps with fidelity scores; (2) developing an FL algorithm which fine-tunes feature models (i.e., representation learning networks for feature extraction) distributively by aggregating model parameters; (3) developing a knowledge distillation method to generate FL training labels when data labels are unavailable. The proposed framework is implemented in the CARLA simulation platform. Extensive experimental results are provided to verify the superior performance and robustness of the developed map fusion and FL schemes. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Science and Technology Innovation Committee of Shenzhen City[JCYJ20200109141622964]
|
WOS研究方向 | Automation & Control Systems
; Robotics
|
WOS类目 | Automation & Control Systems
; Robotics
|
WOS记录号 | WOS:000765738801026
|
EI入藏号 | 20220911738755
|
EI主题词 | Distillation
; Learning systems
; Uncertainty analysis
; Vehicles
|
EI分类号 | Computer Applications:723.5
; Chemical Operations:802.3
; Probability Theory:922.1
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561612 |
引用统计 |
被引频次[WOS]:23
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256580 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Sifakis Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China 2.Harbin Institute of Technology, Harbin, China |
第一作者单位 | 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Zijian,Zhang,Shuai,Wang,Yuncong,Hong,et al. Distributed Dynamic Map Fusion via Federated Learning for Intelligent Networked Vehicles[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:953-959.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论