中文版 | English
题名

Distributed Dynamic Map Fusion via Federated Learning for Intelligent Networked Vehicles

作者
DOI
发表日期
2021
会议名称
2021 IEEE International Conference on Robotics and Automation (ICRA)
ISSN
2577-087X
EISSN
2577-087X
ISBN
978-1-7281-9078-5
会议录名称
卷号
2021-May
页码
953-959
会议日期
30 May-5 June 2021
会议地点
Xi'an, China
会议举办国
China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

The technology of dynamic map fusion among networked vehicles has been developed to enlarge sensing ranges and improve sensing accuracies for individual vehicles. This paper proposes a federated learning (FL) based dynamic map fusion framework to achieve high map quality despite unknown numbers of objects in fields of view (FoVs), various sensing and model uncertainties, and missing data labels for online learning. The novelty of this work is threefold: (1) developing a three-stage fusion scheme to predict the number of objects effectively and to fuse multiple local maps with fidelity scores; (2) developing an FL algorithm which fine-tunes feature models (i.e., representation learning networks for feature extraction) distributively by aggregating model parameters; (3) developing a knowledge distillation method to generate FL training labels when data labels are unavailable. The proposed framework is implemented in the CARLA simulation platform. Extensive experimental results are provided to verify the superior performance and robustness of the developed map fusion and FL schemes.

关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
Science and Technology Innovation Committee of Shenzhen City[JCYJ20200109141622964]
WOS研究方向
Automation & Control Systems ; Robotics
WOS类目
Automation & Control Systems ; Robotics
WOS记录号
WOS:000765738801026
EI入藏号
20220911738755
EI主题词
Distillation ; Learning systems ; Uncertainty analysis ; Vehicles
EI分类号
Computer Applications:723.5 ; Chemical Operations:802.3 ; Probability Theory:922.1
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561612
引用统计
被引频次[WOS]:23
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256580
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Sifakis Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
2.Harbin Institute of Technology, Harbin, China
第一作者单位斯发基斯可信自主系统研究院
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Zijian,Zhang,Shuai,Wang,Yuncong,Hong,et al. Distributed Dynamic Map Fusion via Federated Learning for Intelligent Networked Vehicles[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:953-959.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zijian,Zhang]的文章
[Shuai,Wang]的文章
[Yuncong,Hong]的文章
百度学术
百度学术中相似的文章
[Zijian,Zhang]的文章
[Shuai,Wang]的文章
[Yuncong,Hong]的文章
必应学术
必应学术中相似的文章
[Zijian,Zhang]的文章
[Shuai,Wang]的文章
[Yuncong,Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。