题名 | Periodical generation update using an unbounded external archive for multi-objective optimization |
作者 | |
通讯作者 | H. Ishibuchi |
DOI | |
发表日期 | 2021
|
会议名称 | Proc. of 2021 IEEE Congress on Evolutionary Computation
|
ISBN | 978-1-7281-8394-7
|
会议录名称 | |
页码 | 1912-1920
|
会议日期 | June 28 - July 1, 2021
|
会议地点 | Kraków, Poland
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In the evolutionary multi-objective optimization (EMO) community, an unbounded external archive has been used in some studies for evaluating the performance of EMO algorithms. Those studies show that the unbounded external archive often includes better solutions than the final population. Thus, it is likely that the search ability of an EMO algorithm can be improved by periodically updating the current population using the unbounded external archive (i.e., by periodically choosing good solutions from all the examined solutions as the current population). However, the usefulness of such a global generation update scheme has not been studied in the literature. In this paper, we examine the effect of the periodical global generation update on the performance of well-known and frequently-used EMO algorithms: NSGA-II, MOEA/D and NSGA-III. We use the PBI function with uniformly distributed weight vectors for the periodical global generation update. In our computational experiments, we obtain clearly improved results by the periodical global generation update. We also examine the effect of the frequency of the global generation update (e.g., every 20 generations) on the performance of each EMO algorithm and its run time. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075,62002152]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703866100241
|
EI入藏号 | 20220711650604
|
EI主题词 | Evolutionary algorithms
|
EI分类号 | Optimization Techniques:921.5
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504831 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256581 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
L. Chen,L. M. Pang,H. Ishibuchi,et al. Periodical generation update using an unbounded external archive for multi-objective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1912-1920.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论