中文版 | English
题名

Periodical generation update using an unbounded external archive for multi-objective optimization

作者
通讯作者H. Ishibuchi
DOI
发表日期
2021
会议名称
Proc. of 2021 IEEE Congress on Evolutionary Computation
ISBN
978-1-7281-8394-7
会议录名称
页码
1912-1920
会议日期
June 28 - July 1, 2021
会议地点
Kraków, Poland
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

In the evolutionary multi-objective optimization (EMO) community, an unbounded external archive has been used in some studies for evaluating the performance of EMO algorithms. Those studies show that the unbounded external archive often includes better solutions than the final population. Thus, it is likely that the search ability of an EMO algorithm can be improved by periodically updating the current population using the unbounded external archive (i.e., by periodically choosing good solutions from all the examined solutions as the current population). However, the usefulness of such a global generation update scheme has not been studied in the literature. In this paper, we examine the effect of the periodical global generation update on the performance of well-known and frequently-used EMO algorithms: NSGA-II, MOEA/D and NSGA-III. We use the PBI function with uniformly distributed weight vectors for the periodical global generation update. In our computational experiments, we obtain clearly improved results by the periodical global generation update. We also examine the effect of the frequency of the global generation update (e.g., every 20 generations) on the performance of each EMO algorithm and its run time.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075,62002152] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703866100241
EI入藏号
20220711650604
EI主题词
Evolutionary algorithms
EI分类号
Optimization Techniques:921.5
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504831
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256581
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
L. Chen,L. M. Pang,H. Ishibuchi,et al. Periodical generation update using an unbounded external archive for multi-objective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1912-1920.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[L. Chen]的文章
[L. M. Pang]的文章
[H. Ishibuchi]的文章
百度学术
百度学术中相似的文章
[L. Chen]的文章
[L. M. Pang]的文章
[H. Ishibuchi]的文章
必应学术
必应学术中相似的文章
[L. Chen]的文章
[L. M. Pang]的文章
[H. Ishibuchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。