题名 | Learning Boosts Optimisation: Surrogate-Assisted Real Engine Calibration |
作者 | |
通讯作者 | 刘佳琳 |
DOI | |
发表日期 | 2021
|
会议名称 | 2021 IEEE Symposium Series on Computational Intelligence
|
ISBN | 978-1-7281-9049-5
|
会议录名称 | |
页码 | 1-7
|
会议日期 | 2021.12.05-2021.12.07
|
会议地点 | Orlando, Florida, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Computational intelligence methods have been widely applied to model-based engine calibration. Engine calibration based on computational fluid dynamics (CFD) calculations is time-consuming and constrained. In this paper, we model a real-world aero-engine calibration problem with many parameters as an expensive optimisation problem with hidden constraints. Two surrogate-assisted meta-heuristic frameworks using offline and online strategies are proposed in this paper for efficient aero-engine calibration. A surrogate model is trained on engine parameter settings, that lead to valid and invalid CFD calculations, to predict the feasibility of new parameter settings. Parameter settings that are predicted as infeasible by the surrogate model will be eliminated for evaluation during search to reduce the time wasted on infeasible solutions. To validate our approaches, instantiation of the offline and online frameworks are implemented with a neural network model and a self-adaptive particle swarm optimisation and verified on calibrating a real aero-engine model. Both the proposed offline and online frameworks significantly speed up the calibration in terms of real-time performance compared with the approach without using a surrogate model. The surrogate model not only improves the calibration efficiency but also is capable of indicating the importance of parameters to guide the calibration order. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61906083]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386]
; Guangdong Basic and Applied Basic Research Foundation[2021A1515011830]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
; Shenzhen Fundamental Research Program[JCYJ20190809121403553]
|
WOS研究方向 | Computer Science
; Engineering
; Operations Research & Management Science
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Operations Research & Management Science
; Mathematics, Applied
|
WOS记录号 | WOS:000824464300284
|
EI入藏号 | 20221011761034
|
EI主题词 | Calibration
; Computational fluid dynamics
; Constrained optimization
; Engines
; Particle swarm optimization (PSO)
|
EI分类号 | Aircraft Engines, General:653.1
; Computer Software, Data Handling and Applications:723
; Computer Applications:723.5
; Optimization Techniques:921.5
; Mechanics:931.1
; Systems Science:961
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9660107 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256583 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.南方科技大学,斯发基斯可信自主系统研究院 2.南方科技大学,计算机科学与工程系 3.西安电子科技大学 4.西北工业大学 |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Tong H,Hu CP,Zhang QQ,et al. Learning Boosts Optimisation: Surrogate-Assisted Real Engine Calibration[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-7.
|
条目包含的文件 | 条目无相关文件。 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[童浩]的文章 |
[胡呈鹏]的文章 |
[张清泉]的文章 |
百度学术 |
百度学术中相似的文章 |
[童浩]的文章 |
[胡呈鹏]的文章 |
[张清泉]的文章 |
必应学术 |
必应学术中相似的文章 |
[童浩]的文章 |
[胡呈鹏]的文章 |
[张清泉]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论