题名 | Using a genetic algorithm-based hyper-heuristic to tune MOEA/D for a set of various test problems |
作者 | |
通讯作者 | H. Ishibuchi |
DOI | |
发表日期 | 2021
|
会议名称 | Proc. of 2021 IEEE Congress on Evolutionary Computation
|
ISBN | 978-1-7281-8394-7
|
会议录名称 | |
页码 | 1486-1494
|
会议日期 | June 28 - July 1, 2021
|
会议地点 | Kraków, Poland
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The multi-objective evolutionary algorithm based on decomposition (MOEA/D) is one of the most popular algorithms in the field of evolutionary multi-objective optimization (EMO). Even though MOEA/D has been widely used in many studies, it is likely that the performance of MOEA/D is not always optimized since the same MOEA/D implementation is often used on various problems with different characteristics. However, obtaining an appropriate implementation of MOEA/D for a different problem is not always easy, since there exists a wide variety of choices for the components and parameters in MOEA/D. In this paper, we examine the use of a genetic algorithm-based hyper-heuristic procedure to offline tune MOEA/D on a single test problem, a set of similar test problems, and a set of various test problems. A total of 26 benchmark test problems are used in our study. Experimental results show that the MOEA/D tuned for a set of various test problems does not always perform well. It is also shown that the MOEA/D tuned for a single test problem and for a set of similar test problems always has high performance. Our experimental results strongly suggest the necessity of using a tuning procedure to obtain a different MOEA/D implementation for a different type of problems. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075,62002152]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703866100188
|
EI入藏号 | 20220711650570
|
EI主题词 | Benchmarking
; Heuristic methods
; Multiobjective optimization
|
EI分类号 | Optimization Techniques:921.5
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504748 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256584 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
L. M. Pang,H. Ishibuchi,K. Shang. Using a genetic algorithm-based hyper-heuristic to tune MOEA/D for a set of various test problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1486-1494.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论