中文版 | English
题名

Using a genetic algorithm-based hyper-heuristic to tune MOEA/D for a set of various test problems

作者
通讯作者H. Ishibuchi
DOI
发表日期
2021
会议名称
Proc. of 2021 IEEE Congress on Evolutionary Computation
ISBN
978-1-7281-8394-7
会议录名称
页码
1486-1494
会议日期
June 28 - July 1, 2021
会议地点
Kraków, Poland
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) is one of the most popular algorithms in the field of evolutionary multi-objective optimization (EMO). Even though MOEA/D has been widely used in many studies, it is likely that the performance of MOEA/D is not always optimized since the same MOEA/D implementation is often used on various problems with different characteristics. However, obtaining an appropriate implementation of MOEA/D for a different problem is not always easy, since there exists a wide variety of choices for the components and parameters in MOEA/D. In this paper, we examine the use of a genetic algorithm-based hyper-heuristic procedure to offline tune MOEA/D on a single test problem, a set of similar test problems, and a set of various test problems. A total of 26 benchmark test problems are used in our study. Experimental results show that the MOEA/D tuned for a set of various test problems does not always perform well. It is also shown that the MOEA/D tuned for a single test problem and for a set of similar test problems always has high performance. Our experimental results strongly suggest the necessity of using a tuning procedure to obtain a different MOEA/D implementation for a different type of problems.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075,62002152] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703866100188
EI入藏号
20220711650570
EI主题词
Benchmarking ; Heuristic methods ; Multiobjective optimization
EI分类号
Optimization Techniques:921.5
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504748
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256584
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
L. M. Pang,H. Ishibuchi,K. Shang. Using a genetic algorithm-based hyper-heuristic to tune MOEA/D for a set of various test problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1486-1494.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[L. M. Pang]的文章
[H. Ishibuchi]的文章
[K. Shang]的文章
百度学术
百度学术中相似的文章
[L. M. Pang]的文章
[H. Ishibuchi]的文章
[K. Shang]的文章
必应学术
必应学术中相似的文章
[L. M. Pang]的文章
[H. Ishibuchi]的文章
[K. Shang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。